https://github.com/abraeley/abraeley.github.io
https://github.com/abraeley/abraeley.github.io/data
https://pds-geosciences.wustl.edu/missions/mro/sharad.htm
Background: The north and south poles of Mars are composed primarily of a combination of water ice, dust, and in the south, carbon dioxide. These polar ice caps are often referred to as the north and south polar layered deposits (NPLD/SPLD). The PLD are thought to record up to approximately 5 Mya of climate history on Mars, trapped in the stratigraphy of the ice. In order to study and learn from this geological history, we must first be able to properly interpret the data. When the dielectric properties of a layer interface with another, a radar reflection (called a "reflector") may be generated. The radar data that is recieved back takes the form of a cross-section of the ice cap, from the surface to the bedrock below the ice:
The brightness of each reflector tells us something about the material composition of the layer, while the time it takes to receive a reflection back tells us the depth of the reflector (since radar moves consistently at the speed of light). A reflector's brightness is determined by the difference between the dielectric properties of two layers. The instrument that is used to collect these radargrams is called SHARAD (shallow radar), a radar sounder aboard the Mars Reconnaissance Orbiter. SHARAD emits a 15-25 MHz radar signal into the ice caps in order to see into the interior structure beneath the surface of the ice.
Cutting into the NPLD are troughs inside which exposed stratigraphic layerse are visible in optical light:
It has been thought that these stratigraphic layers correspond in a one-to-one basis with the reflectors seen in SHARAD radargrams.
Motivation: A collaborator on my research (Dr. Bruce Campbell) split the radar data into two sub-bands (called split chirp data): a low frequency sub band of 15-20 MHz, and a high-frequency band of 20-25 MHz:
From this it is clear that there are differences between the high and low frequency radar data. Implicit therein is that at least some of the PLD is sensitive to the frequency of the radar. This resolution-sensitive is telling, as radar is already some distance from the optical part of the electromagnetic spectrum. It is therefore unlikely that one can assume a one-to-one relationship between images in radio-wavelength data with those seen in optical data. The reflectors in the PLD is therefore not the same as a stratigraphic layer, as seen in photographs.
I will be using two datasets: one that I generate, and one that comes from SHARAD (shallow radar) sounder data from the Mars Reconnaissance Orbiter.
The first dataset is to be created by using the 1-dimensional model developed by Sam Courville from the SHARAD team. This model takes in several "layer property" parameters (as opposed to processing parameters):
As shown above, number of layers (n), thicknesses of the layers (m) (the final layer is considered unbounded so the thickness is effectively infinite and does not count), the dielectric constants of the layers, and the loss tangents of the layers are all input parameters. The other parameters vary the way the model processes the layer property parameters. For example, rather than using the SHARAD instrument frequency band (15-25 MHz), a sub band can be used (i.e. 15-20 MHz), or a different frequency range can be selected altogether.
The model outputs a dataset contained in a csv file, with time (in microseconds), power (in dB) and amplitude columns. It also plots the power as a function of time, with power on the x-axis:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
# Reading in the csv files
low3df = pd.read_csv('data/Intersection_3/Model3_L_output_data.csv', sep=",")
high3df = pd.read_csv('data/Intersection_3/Model3_H_output_data.csv', sep=",")
low3df.head(10)
Time (s) | power (dB) | amplitude (real) | amplitude (imag) | |
---|---|---|---|---|
0 | -0.000043 | -57.853135 | -3.892997e-09 | -3.692354e-10 |
1 | -0.000042 | -57.779216 | 3.897481e-09 | 6.032395e-10 |
2 | -0.000042 | -57.313703 | -4.094372e-09 | -7.417902e-10 |
3 | -0.000042 | -56.853206 | 4.335889e-09 | 6.715193e-10 |
4 | -0.000042 | -56.701135 | -4.444132e-09 | -4.319517e-10 |
5 | -0.000042 | -56.957712 | 4.331215e-09 | 1.836783e-10 |
6 | -0.000042 | -57.521867 | -4.061128e-09 | -1.051084e-10 |
7 | -0.000042 | -58.031659 | 3.821435e-09 | 2.693440e-10 |
8 | -0.000042 | -57.999919 | -3.802190e-09 | -5.717598e-10 |
9 | -0.000042 | -57.404672 | 4.042892e-09 | 7.811902e-10 |
# Creating three figures, a high frequency, low frequency, and normalized frequencies plot
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(12,10))
fig.suptitle('Model-Generated Data (Low vs High Frequency)', fontsize=16)
lowExample = low3df.plot(ax=axes[0], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="Time (s)", legend=False)
lowExample.set_ylim(0, 0.0000205)
lowExample.set_xlim(-50, 0)
lowExample.invert_yaxis()
lowExample.set_title("Low Freq (15-20 MHz)")
normdf = high3df
normdf["Normalized (High/Low)"] = high3df["power (dB)"]/low3df["power (dB)"]
normalizedPlot = normdf.plot(ax=axes[1], x="Normalized (High/Low)", y='Time (s)', xlabel="High freq/Low freq", legend=False)
normalizedPlot.set_ylim(0, 0.0000205)
normalizedPlot.set_xlim(0.5, 1.5)
normalizedPlot.invert_yaxis()
normalizedPlot.axvline(1)
normalizedPlot.set_title("Normalized Power")
highExample = high3df.plot(ax=axes[2], x='power (dB)', y='Time (s)', xlabel="Power (dB)", legend=False)
highExample.set_ylim(0, 0.0000205)
highExample.set_xlim(-50, 0)
highExample.invert_yaxis()
highExample.set_title("High Freq (20-25 MHz)")
Text(0.5, 1.0, 'High Freq (20-25 MHz)')
Shown above are two such model-generated plots (and a normalized figure too). Made by manually entering the layer parameters in the 1D Radar Simulator model and changing the frequency bands into a low and high frequency (15-20 MHz, and 20-25 MHz respectively). It should be noted that time is a stand-in for distance/depth beneath the surface of the ice cap, as the speed of light is a constant. The following formula can be used to convert the time to distance:
Where $d$ is distance, $t$ is time it takes to receive the radar return and $\epsilon$ is the dielectric constant.
The power vs time figures showcase that the reflectors are sensitive to radar frequency (note that although the normalized power subplot is approximately centered around one, there are power peaks that appear uniquely in the low and high frequency figures (at the same depth beneath the surface ice). The normalized plot shows that there are significant, and extensive, differences between the split data, implying sensitivity to the changing frequency bands.
The raw SHARAD data comes in the form of a radargram, which is recorded in a single track as the MRO spacecraft orbits above Mars:
All radargrams are 3600 pixels tall (there are 3600 pixel rows comprising the image). In order to replicate the data produced by the SHARAD model, a one-pixel-wide, vertical column of power values can be taken at each pixel from spanning the height of the radargram. By then cutting the data to the surface and basal reflectors in the figure a power versus time figure will be produced out of the split chirp data. Each pixel down is equivalent to 0.0375 microseconds of time (and therefore has a corresponding distance value too).
# Setting some basic parameters (selecting where on the rows I want to an)
timePixel = 0
columnNumber = 1110
# Reading in the SHARAD split chirp data
with open('data/s_03196501/S_03196501_L_RGRAM.IMG', mode='r') as f:
data = np.fromfile(f,dtype=np.float32)
#datatest = np.matrix(data)
radargram = data.reshape(3600, -1)
powerColumn1 = []
time = []
columnNumber -= 1
#Python starts iterating at zero so the last column is columnNumber - 1
for pixelRow in range(0,len(radargram)):
#print("pixelRow: "+pixelRow+" Raw power: "+)
'''
Iterating straight down at a given column
Using the center column value as a pixel value reference,
take the left and right 10 columns-worth of data. In order to do this
find the pixel value in the column to the left and right of the center
column that most matches that of the center reference pixel value.
By doing this I will be able to follow the path of each continuous lateral
reflector as I take averages downward.
'''
time.append(timePixel)
# time per pixel
timePixel+=0.0375
leftNum = columnNumber - 1
leftNum2 = columnNumber - 2
leftNum3 = columnNumber - 3
rightNum = columnNumber + 1
rightNum2 = columnNumber + 2
rightNum3 = columnNumber + 3
rowLeft3 = radargram[pixelRow][leftNum3]
rowLeft2 = radargram[pixelRow][leftNum2]
rowLeft = radargram[pixelRow][leftNum]
rowCenter = radargram[pixelRow][columnNumber]
rowRight = radargram[pixelRow][rightNum]
rowRight2 = radargram[pixelRow][rightNum2]
rowRight3 = radargram[pixelRow][rightNum3]
powerRow = [rowLeft,rowLeft2,rowLeft3,rowCenter,rowRight,rowRight2,rowRight3]
powerRow = [10*math.log10(x) for x in powerRow]
powerRow = sum(powerRow)/len(powerRow) #Average of columns
powerColumn1.append(powerRow)
# Top of surface reflector
beginning = 2377
# Top of basal reflector
end = 2897
time = time[beginning:end]
powerColumn1 = powerColumn1[beginning:end]
# Reading in the high frequency data
timePixel = 0
columnNumber = 1110
with open('data/s_03196501/S_03196501_H_RGRAM.IMG', mode='r') as f:
data = np.fromfile(f,dtype=np.float32)
radargram = data.reshape(3600, -1)
powerColumn2 = []
time = []
columnNumber -= 1
#Python starts iterating at zero so the last column is columnNumber - 1
for pixelRow in range(0,len(radargram)):
'''
Iterating straight down at a given column
Using the center column value as a pixel value reference,
take the left and right 10 columns-worth of data. In order to do this
find the pixel value in the column to the left and right of the center
column that most matches that of the center reference pixel value.
By doing this I will be able to follow the path of each continuous lateral
reflector as I take averages downward.
'''
time.append(timePixel)
timePixel+=0.0375
leftNum = columnNumber - 1
leftNum2 = columnNumber - 2
leftNum3 = columnNumber - 3
rightNum = columnNumber + 1
rightNum2 = columnNumber + 2
rightNum3 = columnNumber + 3
rowLeft3 = radargram[pixelRow][leftNum3]
rowLeft2 = radargram[pixelRow][leftNum2]
rowLeft = radargram[pixelRow][leftNum]
rowCenter = radargram[pixelRow][columnNumber]
rowRight = radargram[pixelRow][rightNum]
rowRight2 = radargram[pixelRow][rightNum2]
rowRight3 = radargram[pixelRow][rightNum3]
powerRow = [rowLeft,rowLeft2,rowLeft3,rowCenter,rowRight,rowRight2,rowRight3]
powerRow = [10*math.log10(x) for x in powerRow]
powerRow = sum(powerRow)/len(powerRow) #Average of columns
powerColumn2.append(powerRow)
# Top of surface reflector
beginning = 2383
# Top of basal reflector in the radargram
end = 2903
time = time[beginning:end]
powerColumn2 = powerColumn2[beginning:end]
# Plotting the power versus time figures for both high and low frequency data
fig, axs = plt.subplots(figsize=(6,18))
plt.plot(powerColumn2,time)
plt.plot(powerColumn1,time, color='red')
plt.title("Track 03246101", fontsize=28)
plt.legend(["S_03246101_H", "S_03246101_L"], loc=4, fontsize=18)
plt.xlabel('Power (dB)', fontsize=24)
plt.ylabel('Time (\u03BCs)', fontsize=24)
axs.invert_yaxis()
plt.show()
Plan and question(s) to be answered: My goal is to leverage the one-dimensional model created by the SHARAD team (introduced below) in order to determine what of the model input parameters (dielectric constant, layer thickness, etc.) has what sort of impact on the reflectors as a function of frequency. After that, my goal will be to apply this knowledge to the split chirp SHARAD data in order to explore the interior stratigraphy, the geospatial distribution of dielectric properties and to hopefully serve as a stepping stone forward in our ability to further unlock the recent martian climate history.
To accomplish this I will write a python script to automate the varying of input parameters, and the running of the SHARAD model. With a large dataset outputted by the model, I will then use the various input parameters for each respective model dataset in order to train a neural network, where the model input parameters (and their respective models) will become the various input features for the neural network.
Input 1: Vertical column of pixels from the radargram
Output 1: Number of layers (n)
Output 2: Thicknesses of n-1 layers (m)
Output 3: Real relative dielectric constants of n layers
At this point I will apply the neural network to the actual SHARAD split chirp data, hopefully revealing a new understanding of how stratigraphy and material composition impact reflectors in the SHARAD split chirp data.
The neural network I will be using is the "Multilayer Perceptron Classifier" (MPC) tool from Scikit Learn.
In order to properly generate the training data needed to feed into the MPC tool, I downloaded the 1D model written by the NASA SHARAD team:
ls SHARAD_1D_Model/*.py
SHARAD_1D_Model/radar_FM1D_refMethod.py*
This python script generates the the .csv files that contain modelled data analogous to the vertical pixel column of power values taken from the radargram data that I plotted above as "Track 03246101". In order to run it however, I need to generate the input parameters to feed into the model (shown above in the "1D Radar Simulator" image).
Since this is a tedious task to do manually, I wrote a script to run the 1D python model locally:
# Generate the parameters
def generateModels(depth = 2000, modelCount = 1, iterationStepSize = 1, startingLayerSize = 1, freqBand = 0, singleModel = 1):
# Surface to basal reflector depth (meters)
'''
Depth is kept consistent throughout the model generation process (in meters).
Layer thicknesses are varied across a consistent total depth.
modelCount is a parameter used to assign iteration numbers to model
names that have been generated by this function.
The iterationStepSize is how large the intervals are in layer size variation
increases between intervals (in meters).
startingLayerSize is the size of the first layer (in meters).
freqBand = 0 for combined total frequency band (15-25 MHz). Setting it to 1 runs the low
frequency band (15-20 MHz), while setting it to 2 runs the high frequency band (20-25 MHz).
To generate only a single model, leave the singleModel parameter = 1. Setting it to any other
value will set the function up to generate numerous models.
'''
import numpy as np
if freqBand == 0:
# Combined 15-25 MHz model
freqBand = '15e6 25e6'
freqBandName = "_Full"
elif freqBand == 1:
# Low freq 15-20 MHz model
freqBand = '15e6 20e6'
freqBandName = "_L"
elif freqBand == 2:
# High freq 20-25 MHz model
freqBand = '20e6 25e6'
freqBandName = "_H"
# Number of layers
for layerThickness in np.arange(startingLayerSize, depth, iterationStepSize):
#if depth % layerThickness != 0.0:
# continue # The layers must be evenly divisible into the depth
# This allows for a consistent depth across models
thicknessList = []
iterationLayerList = [] # Thickness list for *current* iteration
dielectricList = []
lossTangentList = []
numberOfLayers = depth // layerThickness # Number of layers that cleanly divides into depth
thicknessList.append(layerThickness) # This will be what is iterated over to generate each model
for i in range(int(numberOfLayers)):
iterationLayerList.append(str(layerThickness))
# Note, the dielectric constant NEEDS to be changed between layers to generate a reflection
if (i%2) != 0:
# Hard coding average dielectric value from Grima et al. 2009 --> 3.10
dielectricList.append(str(3.4))
# Hard coding average loss tangent value from Grima et al. 2009 --> 0.0026
lossTangentList.append(str(0.0026))
else:
# Hard coding average dielectric value from Grima et al. 2009 --> 3.10
dielectricList.append(str(2.8))
# Hard coding average loss tangent value from Grima et al. 2009 --> 0.0026
lossTangentList.append(str(0.0026))
# Generate the model
with open('model_'+str(modelCount)+freqBandName+'.txt', 'w') as f:
f.write('### 1D Radar Sounding Forward Model file')
f.write('\n')
f.write('# Observation height/altitude above ground (meters)')
f.write('\n')
f.write('300e3')
f.write('\n')
f.write('# Approximate noise floor value in dB (ignored if less than -100dB)')
f.write('\n')
f.write('-101')
f.write('\n')
f.write('# Number of layers, n')
f.write('\n')
f.write(str(int(numberOfLayers)))
f.write('\n')
f.write('# Layer thicknesses (put n-1 values, last layer assumed to be infinite)')
f.write('\n')
f.write(" ".join(iterationLayerList))
f.write('\n')
f.write('# Real relative dielectric permittivity')
f.write('\n')
f.write(" ".join(dielectricList))
f.write('\n')
f.write('# Do you want to use conductivity (1) or loss tangent (0)?')
f.write('\n')
f.write('0')
f.write('\n')
f.write('# Loss tangent for each layer, or conductivity')
f.write('\n')
f.write(" ".join(lossTangentList))
f.write('\n')
f.write('# directory/file of time domain source pulse')
f.write('\n')
f.write('Sharad_Ideal_sourcePulse.csv')
f.write('\n')
f.write('# directory/file of frequency domain matched filter (or "none")')
f.write('\n')
f.write('Sharad_Ideal_matchedFilter.csv')
f.write('\n')
f.write('# Kaiser window degree (0 for no windowing)')
f.write('\n')
f.write('6')
f.write('\n')
f.write('# Window frequencies')
f.write('\n')
f.write(freqBand)
if singleModel == 1:
break
else:
pass
modelCount+=1
generateModels(2000, 1, 1, 1, 2, 1)
cd SHARAD_1D_Model/
/home/abraeley/Downloads/abraeley.github.io-main/SHARAD_1D_Model
ls
model_10000_H.txt model_1600_L_output_data.csv model_10000_L.txt model_1600_L_output_figure.png model_10000.txt model_1600_model.csv model_1600_H_model.csv model_1600_output_data.csv model_1600_H_output_data.csv model_1600_output_figure.png model_1600_H_output_figure.png test/ model_1600_L_model.csv
In the interest of preventing a mess, I will abstain from running the above cell here again, as it would generate many models. I ran this on my computer and created several thousand model .txt files. Here is an example of one of the model files:
cat SHARAD_1D_Model/model_4626.txt
### 1D Radar Sounding Forward Model file # Observation height/altitude above ground (meters) 300e3 # Approximate noise floor value in dB (ignored if less than -100dB) -101 # Number of layers, n 43 # Layer thicknesses (put n-1 values, last layer assumed to be infinite) 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 46.26 # Real relative dielectric permittivity 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 3.4 2.8 # Do you want to use conductivity (1) or loss tangent (0)? 0 # Loss tangent for each layer, or conductivity 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 # directory/file of time domain source pulse Sharad_Ideal_sourcePulse.csv # directory/file of frequency domain matched filter (or "none") Sharad_Ideal_matchedFilter.csv # Kaiser window degree (0 for no windowing) 6 # Window frequencies 15e6 20e6
Note that this model file is the raw text to feed into the SHARAD 1D simulator, typically it is rendered in a GUI. The GUI image is what you see in the "1D Radar Simulator" image. Once my script generated several thousand models, I needed to write a shellscript to actually run the 1D radar simulator pythone script for each model. As there are thousands I wanted to generate models, the shellscript was necessary:
cat SHARAD_1D_Model/runModels.sh
#!/bin/bash for f in *.txt; do python radar_FM1D_refMethod.py ${f}; done;
For the sake of simplicity, I am starting off by varying only the number of layers/layer thicknesses, ignoring other possible ways to vary the data like the two frequency subbands, as well as variations of the dielectric constants. I hold the total depth from the surface of the ice, to the base of the ice the same (2000 meters). I vary the dielectric constant from 3.4 to 2.8, which gives an average of 3.1, and a loss tangent of 2.6 (Grima et al. 2009). If I didn't vary the dielectric constant at all, no reflections would be generated.
After running the 1D simulator with my models, I was able to generate (as .csv files) my model-generated data:
ls data/*.csv
data/model_1000_output_data.csv data/model_2000_output_data.csv data/model_1001_output_data.csv data/model_2001_output_data.csv data/model_1002_output_data.csv data/model_2002_output_data.csv data/model_1003_output_data.csv data/model_2003_output_data.csv data/model_1004_output_data.csv data/model_2004_output_data.csv data/model_1005_output_data.csv data/model_2005_output_data.csv data/model_1006_output_data.csv data/model_2006_output_data.csv data/model_1007_output_data.csv data/model_2007_output_data.csv data/model_1008_output_data.csv data/model_2008_output_data.csv data/model_1009_output_data.csv data/model_2009_output_data.csv data/model_1010_output_data.csv data/model_2010_output_data.csv data/model_1011_output_data.csv data/model_2011_output_data.csv data/model_1012_output_data.csv data/model_2012_output_data.csv data/model_1013_output_data.csv data/model_2013_output_data.csv data/model_1014_output_data.csv data/model_2014_output_data.csv data/model_1015_output_data.csv data/model_2015_output_data.csv data/model_1016_output_data.csv data/model_2016_output_data.csv data/model_1017_output_data.csv data/model_2017_output_data.csv data/model_1018_output_data.csv data/model_2018_output_data.csv data/model_1019_output_data.csv data/model_2019_output_data.csv data/model_1020_output_data.csv data/model_2020_output_data.csv data/model_1021_output_data.csv data/model_2021_output_data.csv data/model_1022_output_data.csv data/model_2022_output_data.csv data/model_1023_output_data.csv data/model_2023_output_data.csv data/model_1024_output_data.csv data/model_2024_output_data.csv data/model_1025_output_data.csv data/model_2025_output_data.csv data/model_1026_output_data.csv data/model_2026_output_data.csv data/model_1027_output_data.csv data/model_2027_output_data.csv data/model_1028_output_data.csv data/model_2028_output_data.csv data/model_1029_output_data.csv data/model_2029_output_data.csv data/model_1030_output_data.csv data/model_2030_output_data.csv data/model_1031_output_data.csv data/model_2031_output_data.csv data/model_1032_output_data.csv data/model_2032_output_data.csv data/model_1033_output_data.csv data/model_2033_output_data.csv data/model_1034_output_data.csv data/model_2034_output_data.csv data/model_1035_output_data.csv data/model_2035_output_data.csv data/model_1036_output_data.csv data/model_2036_output_data.csv data/model_1037_output_data.csv data/model_2037_output_data.csv data/model_1038_output_data.csv data/model_2038_output_data.csv data/model_1039_output_data.csv data/model_2039_output_data.csv data/model_1040_output_data.csv data/model_2040_output_data.csv data/model_1041_output_data.csv data/model_2041_output_data.csv data/model_1042_output_data.csv data/model_2042_output_data.csv data/model_1043_output_data.csv data/model_2043_output_data.csv data/model_1044_output_data.csv data/model_2044_output_data.csv data/model_1045_output_data.csv data/model_2045_output_data.csv data/model_1046_output_data.csv data/model_2046_output_data.csv data/model_1047_output_data.csv data/model_2047_output_data.csv data/model_1048_output_data.csv data/model_2048_output_data.csv data/model_1049_output_data.csv data/model_2049_output_data.csv data/model_1050_output_data.csv data/model_2050_output_data.csv data/model_1051_output_data.csv data/model_2051_output_data.csv data/model_1052_output_data.csv data/model_2052_output_data.csv data/model_1053_output_data.csv data/model_2053_output_data.csv data/model_1054_output_data.csv data/model_2054_output_data.csv data/model_1055_output_data.csv data/model_2055_output_data.csv data/model_1056_output_data.csv data/model_2056_output_data.csv data/model_1057_output_data.csv data/model_2057_output_data.csv data/model_1058_output_data.csv data/model_2058_output_data.csv data/model_1059_output_data.csv data/model_2059_output_data.csv data/model_1060_output_data.csv data/model_2060_output_data.csv data/model_1061_output_data.csv data/model_2061_output_data.csv data/model_1062_output_data.csv data/model_2062_output_data.csv data/model_1063_output_data.csv data/model_2063_output_data.csv data/model_1064_output_data.csv data/model_2064_output_data.csv data/model_1065_output_data.csv data/model_2065_output_data.csv data/model_1066_output_data.csv data/model_2066_output_data.csv data/model_1067_output_data.csv data/model_2067_output_data.csv data/model_1068_output_data.csv data/model_2068_output_data.csv data/model_1069_output_data.csv data/model_2069_output_data.csv data/model_1070_output_data.csv data/model_2070_output_data.csv data/model_1071_output_data.csv data/model_2071_output_data.csv data/model_1072_output_data.csv data/model_2072_output_data.csv data/model_1073_output_data.csv data/model_2073_output_data.csv data/model_1074_output_data.csv data/model_2074_output_data.csv data/model_1075_output_data.csv data/model_2075_output_data.csv data/model_1076_output_data.csv data/model_2076_output_data.csv data/model_1077_output_data.csv data/model_2077_output_data.csv data/model_1078_output_data.csv data/model_2078_output_data.csv data/model_1079_output_data.csv data/model_2079_output_data.csv data/model_1080_output_data.csv data/model_2080_output_data.csv data/model_1081_output_data.csv data/model_2081_output_data.csv data/model_1082_output_data.csv data/model_2082_output_data.csv data/model_1083_output_data.csv data/model_2083_output_data.csv data/model_1084_output_data.csv data/model_2084_output_data.csv data/model_1085_output_data.csv data/model_2085_output_data.csv data/model_1086_output_data.csv data/model_2086_output_data.csv data/model_1087_output_data.csv data/model_2087_output_data.csv data/model_1088_output_data.csv data/model_2088_output_data.csv data/model_1089_output_data.csv data/model_2089_output_data.csv data/model_1090_output_data.csv data/model_2090_output_data.csv data/model_1091_output_data.csv data/model_2091_output_data.csv data/model_1092_output_data.csv data/model_2092_output_data.csv data/model_1093_output_data.csv data/model_2093_output_data.csv data/model_1094_output_data.csv data/model_2094_output_data.csv data/model_1095_output_data.csv data/model_2095_output_data.csv data/model_1096_output_data.csv data/model_2096_output_data.csv data/model_1097_output_data.csv data/model_2097_output_data.csv data/model_1098_output_data.csv data/model_2098_output_data.csv data/model_1099_output_data.csv data/model_2099_output_data.csv data/model_1100_output_data.csv data/model_2100_output_data.csv data/model_1101_output_data.csv data/model_2101_output_data.csv data/model_1102_output_data.csv data/model_2102_output_data.csv data/model_1103_output_data.csv data/model_2103_output_data.csv data/model_1104_output_data.csv data/model_2104_output_data.csv data/model_1105_output_data.csv data/model_2105_output_data.csv data/model_1106_output_data.csv data/model_2106_output_data.csv data/model_1107_output_data.csv data/model_2107_output_data.csv data/model_1108_output_data.csv data/model_2108_output_data.csv data/model_1109_output_data.csv data/model_2109_output_data.csv data/model_1110_output_data.csv data/model_2110_output_data.csv data/model_1111_output_data.csv data/model_2111_output_data.csv data/model_1112_output_data.csv data/model_2112_output_data.csv data/model_1113_output_data.csv data/model_2113_output_data.csv data/model_1114_output_data.csv data/model_2114_output_data.csv data/model_1115_output_data.csv data/model_2115_output_data.csv data/model_1116_output_data.csv data/model_2116_output_data.csv data/model_1117_output_data.csv data/model_2117_output_data.csv data/model_1118_output_data.csv data/model_2118_output_data.csv data/model_1119_output_data.csv data/model_2119_output_data.csv data/model_1120_output_data.csv data/model_2120_output_data.csv data/model_1121_output_data.csv data/model_2121_output_data.csv data/model_1122_output_data.csv data/model_2122_output_data.csv data/model_1123_output_data.csv data/model_2123_output_data.csv data/model_1124_output_data.csv data/model_2124_output_data.csv data/model_1125_output_data.csv data/model_2125_output_data.csv data/model_1126_output_data.csv data/model_2126_output_data.csv data/model_1127_output_data.csv data/model_2127_output_data.csv data/model_1128_output_data.csv data/model_2128_output_data.csv data/model_1129_output_data.csv data/model_2129_output_data.csv data/model_1130_output_data.csv data/model_2130_output_data.csv data/model_1131_output_data.csv data/model_2131_output_data.csv data/model_1132_output_data.csv data/model_2132_output_data.csv data/model_1133_output_data.csv data/model_2133_output_data.csv data/model_1134_output_data.csv data/model_2134_output_data.csv data/model_1135_output_data.csv data/model_2135_output_data.csv data/model_1136_output_data.csv data/model_2136_output_data.csv data/model_1137_output_data.csv data/model_2137_output_data.csv data/model_1138_output_data.csv data/model_2138_output_data.csv data/model_1139_output_data.csv data/model_2139_output_data.csv data/model_1140_output_data.csv data/model_2140_output_data.csv data/model_1141_output_data.csv data/model_2141_output_data.csv data/model_1142_output_data.csv data/model_2142_output_data.csv data/model_1143_output_data.csv data/model_2143_output_data.csv data/model_1144_output_data.csv data/model_2144_output_data.csv data/model_1145_output_data.csv data/model_2145_output_data.csv data/model_1146_output_data.csv data/model_2146_output_data.csv data/model_1147_output_data.csv data/model_2147_output_data.csv data/model_1148_output_data.csv data/model_2148_output_data.csv data/model_1149_output_data.csv data/model_2149_output_data.csv data/model_1150_output_data.csv data/model_2150_output_data.csv data/model_1151_output_data.csv data/model_2151_output_data.csv data/model_1152_output_data.csv data/model_2152_output_data.csv data/model_1153_output_data.csv data/model_2153_output_data.csv data/model_1154_output_data.csv data/model_2154_output_data.csv data/model_1155_output_data.csv data/model_2155_output_data.csv data/model_1156_output_data.csv data/model_2156_output_data.csv data/model_1157_output_data.csv data/model_2157_output_data.csv data/model_1158_output_data.csv data/model_2158_output_data.csv data/model_1159_output_data.csv data/model_2159_output_data.csv data/model_1160_output_data.csv data/model_2160_output_data.csv data/model_1161_output_data.csv data/model_2161_output_data.csv data/model_1162_output_data.csv data/model_2162_output_data.csv data/model_1163_output_data.csv data/model_2163_output_data.csv data/model_1164_output_data.csv data/model_2164_output_data.csv data/model_1165_output_data.csv data/model_2165_output_data.csv data/model_1166_output_data.csv data/model_2166_output_data.csv data/model_1167_output_data.csv data/model_2167_output_data.csv data/model_1168_output_data.csv data/model_2168_output_data.csv data/model_1169_output_data.csv data/model_2169_output_data.csv data/model_1170_output_data.csv data/model_2170_output_data.csv data/model_1171_output_data.csv data/model_2171_output_data.csv data/model_1172_output_data.csv data/model_2172_output_data.csv data/model_1173_output_data.csv data/model_2173_output_data.csv data/model_1174_output_data.csv data/model_2174_output_data.csv data/model_1175_output_data.csv data/model_2175_output_data.csv data/model_1176_output_data.csv data/model_2176_output_data.csv data/model_1177_output_data.csv data/model_2177_output_data.csv data/model_1178_output_data.csv data/model_2178_output_data.csv data/model_1179_output_data.csv data/model_2179_output_data.csv data/model_1180_output_data.csv data/model_2180_output_data.csv data/model_1181_output_data.csv data/model_2181_output_data.csv data/model_1182_output_data.csv data/model_2182_output_data.csv data/model_1183_output_data.csv data/model_2183_output_data.csv data/model_1184_output_data.csv data/model_2184_output_data.csv data/model_1185_output_data.csv data/model_2185_output_data.csv data/model_1186_output_data.csv data/model_2186_output_data.csv data/model_1187_output_data.csv data/model_2187_output_data.csv data/model_1188_output_data.csv data/model_2188_output_data.csv data/model_1189_output_data.csv data/model_2189_output_data.csv data/model_1190_output_data.csv data/model_2190_output_data.csv data/model_1191_output_data.csv data/model_2191_output_data.csv data/model_1192_output_data.csv data/model_2192_output_data.csv data/model_1193_output_data.csv data/model_2193_output_data.csv data/model_1194_output_data.csv data/model_2194_output_data.csv data/model_1195_output_data.csv data/model_2195_output_data.csv data/model_1196_output_data.csv data/model_2196_output_data.csv data/model_1197_output_data.csv data/model_2197_output_data.csv data/model_1198_output_data.csv data/model_2198_output_data.csv data/model_1199_output_data.csv data/model_2199_output_data.csv data/model_1200_output_data.csv data/model_2200_output_data.csv data/model_1201_output_data.csv data/model_2201_output_data.csv data/model_1202_output_data.csv data/model_2202_output_data.csv data/model_1203_output_data.csv data/model_2203_output_data.csv data/model_1204_output_data.csv data/model_2204_output_data.csv data/model_1205_output_data.csv data/model_2205_output_data.csv data/model_1206_output_data.csv data/model_2206_output_data.csv data/model_1207_output_data.csv data/model_2207_output_data.csv data/model_1208_output_data.csv data/model_2208_output_data.csv data/model_1209_output_data.csv data/model_2209_output_data.csv data/model_1210_output_data.csv data/model_2210_output_data.csv data/model_1211_output_data.csv data/model_2211_output_data.csv data/model_1212_output_data.csv data/model_2212_output_data.csv data/model_1213_output_data.csv data/model_2213_output_data.csv data/model_1214_output_data.csv data/model_2214_output_data.csv data/model_1215_output_data.csv data/model_2215_output_data.csv data/model_1216_output_data.csv data/model_2216_output_data.csv data/model_1217_output_data.csv data/model_2217_output_data.csv data/model_1218_output_data.csv data/model_2218_output_data.csv data/model_1219_output_data.csv data/model_2219_output_data.csv data/model_1220_output_data.csv data/model_2220_output_data.csv data/model_1221_output_data.csv data/model_2221_output_data.csv data/model_1222_output_data.csv data/model_2222_output_data.csv data/model_1223_output_data.csv data/model_2223_output_data.csv data/model_1224_output_data.csv data/model_2224_output_data.csv data/model_1225_output_data.csv data/model_2225_output_data.csv data/model_1226_output_data.csv data/model_2226_output_data.csv data/model_1227_output_data.csv data/model_2227_output_data.csv data/model_1228_output_data.csv data/model_2228_output_data.csv data/model_1229_output_data.csv data/model_2229_output_data.csv data/model_1230_output_data.csv data/model_2230_output_data.csv data/model_1231_output_data.csv data/model_2231_output_data.csv data/model_1232_output_data.csv data/model_2232_output_data.csv data/model_1233_output_data.csv data/model_2233_output_data.csv data/model_1234_output_data.csv data/model_2234_output_data.csv data/model_1235_output_data.csv data/model_2235_output_data.csv data/model_1236_output_data.csv data/model_2236_output_data.csv data/model_1237_output_data.csv data/model_2237_output_data.csv data/model_1238_output_data.csv data/model_2238_output_data.csv data/model_1239_output_data.csv data/model_2239_output_data.csv data/model_1240_output_data.csv data/model_2240_output_data.csv data/model_1241_output_data.csv data/model_2241_output_data.csv data/model_1242_output_data.csv data/model_2242_output_data.csv data/model_1243_output_data.csv data/model_2243_output_data.csv data/model_1244_output_data.csv data/model_2244_output_data.csv data/model_1245_output_data.csv data/model_2245_output_data.csv data/model_1246_output_data.csv data/model_2246_output_data.csv data/model_1247_output_data.csv data/model_2247_output_data.csv data/model_1248_output_data.csv data/model_2248_output_data.csv data/model_1249_output_data.csv data/model_2249_output_data.csv data/model_1250_output_data.csv data/model_2250_output_data.csv data/model_1251_output_data.csv data/model_2251_output_data.csv data/model_1252_output_data.csv data/model_2252_output_data.csv data/model_1253_output_data.csv data/model_2253_output_data.csv data/model_1254_output_data.csv data/model_2254_output_data.csv data/model_1255_output_data.csv data/model_2255_output_data.csv data/model_1256_output_data.csv data/model_2256_output_data.csv data/model_1257_output_data.csv data/model_2257_output_data.csv data/model_1258_output_data.csv data/model_2258_output_data.csv data/model_1259_output_data.csv data/model_2259_output_data.csv data/model_1260_output_data.csv data/model_2260_output_data.csv data/model_1261_output_data.csv data/model_2261_output_data.csv data/model_1262_output_data.csv data/model_2262_output_data.csv data/model_1263_output_data.csv data/model_2263_output_data.csv data/model_1264_output_data.csv data/model_2264_output_data.csv data/model_1265_output_data.csv data/model_2265_output_data.csv data/model_1266_output_data.csv data/model_2266_output_data.csv data/model_1267_output_data.csv data/model_2267_output_data.csv data/model_1268_output_data.csv data/model_2268_output_data.csv data/model_1269_output_data.csv data/model_2269_output_data.csv data/model_1270_output_data.csv data/model_2270_output_data.csv data/model_1271_output_data.csv data/model_2271_output_data.csv data/model_1272_output_data.csv data/model_2272_output_data.csv data/model_1273_output_data.csv data/model_2273_output_data.csv data/model_1274_output_data.csv data/model_2274_output_data.csv data/model_1275_output_data.csv data/model_2275_output_data.csv data/model_1276_output_data.csv data/model_2276_output_data.csv data/model_1277_output_data.csv data/model_2277_output_data.csv data/model_1278_output_data.csv data/model_2278_output_data.csv data/model_1279_output_data.csv data/model_2279_output_data.csv data/model_1280_output_data.csv data/model_2280_output_data.csv data/model_1281_output_data.csv data/model_2281_output_data.csv data/model_1282_output_data.csv data/model_2282_output_data.csv data/model_1283_output_data.csv data/model_2283_output_data.csv data/model_1284_output_data.csv data/model_2284_output_data.csv data/model_1285_output_data.csv data/model_2285_output_data.csv data/model_1286_output_data.csv data/model_2286_output_data.csv data/model_1287_output_data.csv data/model_2287_output_data.csv data/model_1288_output_data.csv data/model_2288_output_data.csv data/model_1289_output_data.csv data/model_2289_output_data.csv data/model_1290_output_data.csv data/model_2290_output_data.csv data/model_1291_output_data.csv data/model_2291_output_data.csv data/model_1292_output_data.csv data/model_2292_output_data.csv data/model_1293_output_data.csv data/model_2293_output_data.csv data/model_1294_output_data.csv data/model_2294_output_data.csv data/model_1295_output_data.csv data/model_2295_output_data.csv data/model_1296_output_data.csv data/model_2296_output_data.csv data/model_1297_output_data.csv data/model_2297_output_data.csv data/model_1298_output_data.csv data/model_2298_output_data.csv data/model_1299_output_data.csv data/model_2299_output_data.csv data/model_1300_output_data.csv data/model_2300_output_data.csv data/model_1301_output_data.csv data/model_2301_output_data.csv data/model_1302_output_data.csv data/model_2302_output_data.csv data/model_1303_output_data.csv data/model_2303_output_data.csv data/model_1304_output_data.csv data/model_2304_output_data.csv data/model_1305_output_data.csv data/model_2305_output_data.csv data/model_1306_output_data.csv data/model_2306_output_data.csv data/model_1307_output_data.csv data/model_2307_output_data.csv data/model_1308_output_data.csv data/model_2308_output_data.csv data/model_1309_output_data.csv data/model_2309_output_data.csv data/model_1310_output_data.csv data/model_2310_output_data.csv data/model_1311_output_data.csv data/model_2311_output_data.csv data/model_1312_output_data.csv data/model_2312_output_data.csv data/model_1313_output_data.csv data/model_2313_output_data.csv data/model_1314_output_data.csv data/model_2314_output_data.csv data/model_1315_output_data.csv data/model_2315_output_data.csv data/model_1316_output_data.csv data/model_2316_output_data.csv data/model_1317_output_data.csv data/model_2317_output_data.csv data/model_1318_output_data.csv data/model_2318_output_data.csv data/model_1319_output_data.csv data/model_2319_output_data.csv data/model_1320_output_data.csv data/model_2320_output_data.csv data/model_1321_output_data.csv data/model_2321_output_data.csv data/model_1322_output_data.csv data/model_2322_output_data.csv data/model_1323_output_data.csv data/model_2323_output_data.csv data/model_1324_output_data.csv data/model_2324_output_data.csv data/model_1325_output_data.csv data/model_2325_output_data.csv data/model_1326_output_data.csv data/model_2326_output_data.csv data/model_1327_output_data.csv data/model_2327_output_data.csv data/model_1328_output_data.csv data/model_2328_output_data.csv data/model_1329_output_data.csv data/model_2329_output_data.csv data/model_1330_output_data.csv data/model_2330_output_data.csv data/model_1331_output_data.csv data/model_2331_output_data.csv data/model_1332_output_data.csv data/model_2332_output_data.csv data/model_1333_output_data.csv data/model_2333_output_data.csv data/model_1334_output_data.csv data/model_2334_output_data.csv data/model_1335_output_data.csv data/model_2335_output_data.csv data/model_1336_output_data.csv data/model_2336_output_data.csv data/model_1337_output_data.csv data/model_2337_output_data.csv data/model_1338_output_data.csv data/model_2338_output_data.csv data/model_1339_output_data.csv data/model_2339_output_data.csv data/model_1340_output_data.csv data/model_2340_output_data.csv data/model_1341_output_data.csv data/model_2341_output_data.csv data/model_1342_output_data.csv data/model_2342_output_data.csv data/model_1343_output_data.csv data/model_2343_output_data.csv data/model_1344_output_data.csv data/model_2344_output_data.csv data/model_1345_output_data.csv data/model_2345_output_data.csv data/model_1346_output_data.csv data/model_2346_output_data.csv data/model_1347_output_data.csv data/model_2347_output_data.csv data/model_1348_output_data.csv data/model_2348_output_data.csv data/model_1349_output_data.csv data/model_2349_output_data.csv data/model_1350_output_data.csv data/model_2350_output_data.csv data/model_1351_output_data.csv data/model_2351_output_data.csv data/model_1352_output_data.csv data/model_2352_output_data.csv data/model_1353_output_data.csv data/model_2353_output_data.csv data/model_1354_output_data.csv data/model_2354_output_data.csv data/model_1355_output_data.csv data/model_2355_output_data.csv data/model_1356_output_data.csv data/model_2356_output_data.csv data/model_1357_output_data.csv data/model_2357_output_data.csv data/model_1358_output_data.csv data/model_2358_output_data.csv data/model_1359_output_data.csv data/model_2359_output_data.csv data/model_1360_output_data.csv data/model_2360_output_data.csv data/model_1361_output_data.csv data/model_2361_output_data.csv data/model_1362_output_data.csv data/model_2362_output_data.csv data/model_1363_output_data.csv data/model_2363_output_data.csv data/model_1364_output_data.csv data/model_2364_output_data.csv data/model_1365_output_data.csv data/model_2365_output_data.csv data/model_1366_output_data.csv data/model_2366_output_data.csv data/model_1367_output_data.csv data/model_2367_output_data.csv data/model_1368_output_data.csv data/model_2368_output_data.csv data/model_1369_output_data.csv data/model_2369_output_data.csv data/model_1370_output_data.csv data/model_2370_output_data.csv data/model_1371_output_data.csv data/model_2371_output_data.csv data/model_1372_output_data.csv data/model_2372_output_data.csv data/model_1373_output_data.csv data/model_2373_output_data.csv data/model_1374_output_data.csv data/model_2374_output_data.csv data/model_1375_output_data.csv data/model_2375_output_data.csv data/model_1376_output_data.csv data/model_2376_output_data.csv data/model_1377_output_data.csv data/model_2377_output_data.csv data/model_1378_output_data.csv data/model_2378_output_data.csv data/model_1379_output_data.csv data/model_2379_output_data.csv data/model_1380_output_data.csv data/model_2380_output_data.csv data/model_1381_output_data.csv data/model_2381_output_data.csv data/model_1382_output_data.csv data/model_2382_output_data.csv data/model_1383_output_data.csv data/model_2383_output_data.csv data/model_1384_output_data.csv data/model_2384_output_data.csv data/model_1385_output_data.csv data/model_2385_output_data.csv data/model_1386_output_data.csv data/model_2386_output_data.csv data/model_1387_output_data.csv data/model_2387_output_data.csv data/model_1388_output_data.csv data/model_2388_output_data.csv data/model_1389_output_data.csv data/model_2389_output_data.csv data/model_1390_output_data.csv data/model_2390_output_data.csv data/model_1391_output_data.csv data/model_2391_output_data.csv data/model_1392_output_data.csv data/model_2392_output_data.csv data/model_1393_output_data.csv data/model_2393_output_data.csv data/model_1394_output_data.csv data/model_2394_output_data.csv data/model_1395_output_data.csv data/model_2395_output_data.csv data/model_1396_output_data.csv data/model_2396_output_data.csv data/model_1397_output_data.csv data/model_2397_output_data.csv data/model_1398_output_data.csv data/model_2398_output_data.csv data/model_1399_output_data.csv data/model_2399_output_data.csv data/model_1400_output_data.csv data/model_2400_output_data.csv data/model_1401_output_data.csv data/model_2401_output_data.csv data/model_1402_output_data.csv data/model_2402_output_data.csv data/model_1403_output_data.csv data/model_2403_output_data.csv data/model_1404_output_data.csv data/model_2404_output_data.csv data/model_1405_output_data.csv data/model_2405_output_data.csv data/model_1406_output_data.csv data/model_2406_output_data.csv data/model_1407_output_data.csv data/model_2407_output_data.csv data/model_1408_output_data.csv data/model_2408_output_data.csv data/model_1409_output_data.csv data/model_2409_output_data.csv data/model_1410_output_data.csv data/model_2410_output_data.csv data/model_1411_output_data.csv data/model_2411_output_data.csv data/model_1412_output_data.csv data/model_2412_output_data.csv data/model_1413_output_data.csv data/model_2413_output_data.csv data/model_1414_output_data.csv data/model_2414_output_data.csv data/model_1415_output_data.csv data/model_2415_output_data.csv data/model_1416_output_data.csv data/model_2416_output_data.csv data/model_1417_output_data.csv data/model_2417_output_data.csv data/model_1418_output_data.csv data/model_2418_output_data.csv data/model_1419_output_data.csv data/model_2419_output_data.csv data/model_1420_output_data.csv data/model_2420_output_data.csv data/model_1421_output_data.csv data/model_2421_output_data.csv data/model_1422_output_data.csv data/model_2422_output_data.csv data/model_1423_output_data.csv data/model_2423_output_data.csv data/model_1424_output_data.csv data/model_2424_output_data.csv data/model_1425_output_data.csv data/model_2425_output_data.csv data/model_1426_output_data.csv data/model_2426_output_data.csv data/model_1427_output_data.csv data/model_2427_output_data.csv data/model_1428_output_data.csv data/model_2428_output_data.csv data/model_1429_output_data.csv data/model_2429_output_data.csv data/model_1430_output_data.csv data/model_2430_output_data.csv data/model_1431_output_data.csv data/model_2431_output_data.csv data/model_1432_output_data.csv data/model_2432_output_data.csv data/model_1433_output_data.csv data/model_2433_output_data.csv data/model_1434_output_data.csv data/model_2434_output_data.csv data/model_1435_output_data.csv data/model_2435_output_data.csv data/model_1436_output_data.csv data/model_2436_output_data.csv data/model_1437_output_data.csv data/model_2437_output_data.csv data/model_1438_output_data.csv data/model_2438_output_data.csv data/model_1439_output_data.csv data/model_2439_output_data.csv data/model_1440_output_data.csv data/model_2440_output_data.csv data/model_1441_output_data.csv data/model_2441_output_data.csv data/model_1442_output_data.csv data/model_2442_output_data.csv data/model_1443_output_data.csv data/model_2443_output_data.csv data/model_1444_output_data.csv data/model_2444_output_data.csv data/model_1445_output_data.csv data/model_2445_output_data.csv data/model_1446_output_data.csv data/model_2446_output_data.csv data/model_1447_output_data.csv data/model_2447_output_data.csv data/model_1448_output_data.csv data/model_2448_output_data.csv data/model_1449_output_data.csv data/model_2449_output_data.csv data/model_1450_output_data.csv data/model_2450_output_data.csv data/model_1451_output_data.csv data/model_2451_output_data.csv data/model_1452_output_data.csv data/model_2452_output_data.csv data/model_1453_output_data.csv data/model_2453_output_data.csv data/model_1454_output_data.csv data/model_2454_output_data.csv data/model_1455_output_data.csv data/model_2455_output_data.csv data/model_1456_output_data.csv data/model_2456_output_data.csv data/model_1457_output_data.csv data/model_2457_output_data.csv data/model_1458_output_data.csv data/model_2458_output_data.csv data/model_1459_output_data.csv data/model_2459_output_data.csv data/model_1460_output_data.csv data/model_2460_output_data.csv data/model_1461_output_data.csv data/model_2461_output_data.csv data/model_1462_output_data.csv data/model_2462_output_data.csv data/model_1463_output_data.csv data/model_2463_output_data.csv data/model_1464_output_data.csv data/model_2464_output_data.csv data/model_1465_output_data.csv data/model_2465_output_data.csv data/model_1466_output_data.csv data/model_2466_output_data.csv data/model_1467_output_data.csv data/model_2467_output_data.csv data/model_1468_output_data.csv data/model_2468_output_data.csv data/model_1469_output_data.csv data/model_2469_output_data.csv data/model_1470_output_data.csv data/model_2470_output_data.csv data/model_1471_output_data.csv data/model_2471_output_data.csv data/model_1472_output_data.csv data/model_2472_output_data.csv data/model_1473_output_data.csv data/model_2473_output_data.csv data/model_1474_output_data.csv data/model_2474_output_data.csv data/model_1475_output_data.csv data/model_2475_output_data.csv data/model_1476_output_data.csv data/model_2476_output_data.csv data/model_1477_output_data.csv data/model_2477_output_data.csv data/model_1478_output_data.csv data/model_2478_output_data.csv data/model_1479_output_data.csv data/model_2479_output_data.csv data/model_1480_output_data.csv data/model_2480_output_data.csv data/model_1481_output_data.csv data/model_2481_output_data.csv data/model_1482_output_data.csv data/model_2482_output_data.csv data/model_1483_output_data.csv data/model_2483_output_data.csv data/model_1484_output_data.csv data/model_2484_output_data.csv data/model_1485_output_data.csv data/model_2485_output_data.csv data/model_1486_output_data.csv data/model_2486_output_data.csv data/model_1487_output_data.csv data/model_2487_output_data.csv data/model_1488_output_data.csv data/model_2488_output_data.csv data/model_1489_output_data.csv data/model_2489_output_data.csv data/model_1490_output_data.csv data/model_2490_output_data.csv data/model_1491_output_data.csv data/model_2491_output_data.csv data/model_1492_output_data.csv data/model_2492_output_data.csv data/model_1493_output_data.csv data/model_2493_output_data.csv data/model_1494_output_data.csv data/model_2494_output_data.csv data/model_1495_output_data.csv data/model_2495_output_data.csv data/model_1496_output_data.csv data/model_2496_output_data.csv data/model_1497_output_data.csv data/model_2497_output_data.csv data/model_1498_output_data.csv data/model_2498_output_data.csv data/model_1499_output_data.csv data/model_2499_output_data.csv data/model_1500_output_data.csv data/model_2500_output_data.csv data/model_1501_output_data.csv data/model_2501_output_data.csv data/model_1502_output_data.csv data/model_2502_output_data.csv data/model_1503_output_data.csv data/model_2503_output_data.csv data/model_1504_output_data.csv data/model_2504_output_data.csv data/model_1505_output_data.csv data/model_2505_output_data.csv data/model_1506_output_data.csv data/model_2506_output_data.csv data/model_1507_output_data.csv data/model_2507_output_data.csv data/model_1508_output_data.csv data/model_2508_output_data.csv data/model_1509_output_data.csv data/model_2509_output_data.csv data/model_1510_output_data.csv data/model_2510_output_data.csv data/model_1511_output_data.csv data/model_2511_output_data.csv data/model_1512_output_data.csv data/model_2512_output_data.csv data/model_1513_output_data.csv data/model_2513_output_data.csv data/model_1514_output_data.csv data/model_2514_output_data.csv data/model_1515_output_data.csv data/model_2515_output_data.csv data/model_1516_output_data.csv data/model_2516_output_data.csv data/model_1517_output_data.csv data/model_2517_output_data.csv data/model_1518_output_data.csv data/model_2518_output_data.csv data/model_1519_output_data.csv data/model_2519_output_data.csv data/model_1520_output_data.csv data/model_2520_output_data.csv data/model_1521_output_data.csv data/model_2521_output_data.csv data/model_1522_output_data.csv data/model_2522_output_data.csv data/model_1523_output_data.csv data/model_2523_output_data.csv data/model_1524_output_data.csv data/model_2524_output_data.csv data/model_1525_output_data.csv data/model_2525_output_data.csv data/model_1526_output_data.csv data/model_2526_output_data.csv data/model_1527_output_data.csv data/model_2527_output_data.csv data/model_1528_output_data.csv data/model_2528_output_data.csv data/model_1529_output_data.csv data/model_2529_output_data.csv data/model_1530_output_data.csv data/model_2530_output_data.csv data/model_1531_output_data.csv data/model_2531_output_data.csv data/model_1532_output_data.csv data/model_2532_output_data.csv data/model_1533_output_data.csv data/model_2533_output_data.csv data/model_1534_output_data.csv data/model_2534_output_data.csv data/model_1535_output_data.csv data/model_2535_output_data.csv data/model_1536_output_data.csv data/model_2536_output_data.csv data/model_1537_output_data.csv data/model_2537_output_data.csv data/model_1538_output_data.csv data/model_2538_output_data.csv data/model_1539_output_data.csv data/model_2539_output_data.csv data/model_1540_output_data.csv data/model_2540_output_data.csv data/model_1541_output_data.csv data/model_2541_output_data.csv data/model_1542_output_data.csv data/model_2542_output_data.csv data/model_1543_output_data.csv data/model_2543_output_data.csv data/model_1544_output_data.csv data/model_2544_output_data.csv data/model_1545_output_data.csv data/model_2545_output_data.csv data/model_1546_output_data.csv data/model_2546_output_data.csv data/model_1547_output_data.csv data/model_2547_output_data.csv data/model_1548_output_data.csv data/model_2548_output_data.csv data/model_1549_output_data.csv data/model_2549_output_data.csv data/model_1550_output_data.csv data/model_2550_output_data.csv data/model_1551_output_data.csv data/model_2551_output_data.csv data/model_1552_output_data.csv data/model_2552_output_data.csv data/model_1553_output_data.csv data/model_2553_output_data.csv data/model_1554_output_data.csv data/model_2554_output_data.csv data/model_1555_output_data.csv data/model_2555_output_data.csv data/model_1556_output_data.csv data/model_2556_output_data.csv data/model_1557_output_data.csv data/model_2557_output_data.csv data/model_1558_output_data.csv data/model_2558_output_data.csv data/model_1559_output_data.csv data/model_2559_output_data.csv data/model_1560_output_data.csv data/model_2560_output_data.csv data/model_1561_output_data.csv data/model_2561_output_data.csv data/model_1562_output_data.csv data/model_2562_output_data.csv data/model_1563_output_data.csv data/model_2563_output_data.csv data/model_1564_output_data.csv data/model_2564_output_data.csv data/model_1565_output_data.csv data/model_2565_output_data.csv data/model_1566_output_data.csv data/model_2566_output_data.csv data/model_1567_output_data.csv data/model_2567_output_data.csv data/model_1568_output_data.csv data/model_2568_output_data.csv data/model_1569_output_data.csv data/model_2569_output_data.csv data/model_1570_output_data.csv data/model_2570_output_data.csv data/model_1571_output_data.csv data/model_2571_output_data.csv data/model_1572_output_data.csv data/model_2572_output_data.csv data/model_1573_output_data.csv data/model_2573_output_data.csv data/model_1574_output_data.csv data/model_2574_output_data.csv data/model_1575_output_data.csv data/model_2575_output_data.csv data/model_1576_output_data.csv data/model_2576_output_data.csv data/model_1577_output_data.csv data/model_2577_output_data.csv data/model_1578_output_data.csv data/model_2578_output_data.csv data/model_1579_output_data.csv data/model_2579_output_data.csv data/model_1580_output_data.csv data/model_2580_output_data.csv data/model_1581_output_data.csv data/model_2581_output_data.csv data/model_1582_output_data.csv data/model_2582_output_data.csv data/model_1583_output_data.csv data/model_2583_output_data.csv data/model_1584_output_data.csv data/model_2584_output_data.csv data/model_1585_output_data.csv data/model_2585_output_data.csv data/model_1586_output_data.csv data/model_2586_output_data.csv data/model_1587_output_data.csv data/model_2587_output_data.csv data/model_1588_output_data.csv data/model_2588_output_data.csv data/model_1589_output_data.csv data/model_2589_output_data.csv data/model_1590_output_data.csv data/model_2590_output_data.csv data/model_1591_output_data.csv data/model_2591_output_data.csv data/model_1592_output_data.csv data/model_2592_output_data.csv data/model_1593_output_data.csv data/model_2593_output_data.csv data/model_1594_output_data.csv data/model_2594_output_data.csv data/model_1595_output_data.csv data/model_2595_output_data.csv data/model_1596_output_data.csv data/model_2596_output_data.csv data/model_1597_output_data.csv data/model_2597_output_data.csv data/model_1598_output_data.csv data/model_2598_output_data.csv data/model_1599_output_data.csv data/model_2599_output_data.csv data/model_1600_output_data.csv data/model_2600_output_data.csv data/model_1601_output_data.csv data/model_2601_output_data.csv data/model_1602_output_data.csv data/model_2602_output_data.csv data/model_1603_output_data.csv data/model_2603_output_data.csv data/model_1604_output_data.csv data/model_2604_output_data.csv data/model_1605_output_data.csv data/model_2605_output_data.csv data/model_1606_output_data.csv data/model_2606_output_data.csv data/model_1607_output_data.csv data/model_2607_output_data.csv data/model_1608_output_data.csv data/model_2608_output_data.csv data/model_1609_output_data.csv data/model_2609_output_data.csv data/model_1610_output_data.csv data/model_2610_output_data.csv data/model_1611_output_data.csv data/model_2611_output_data.csv data/model_1612_output_data.csv data/model_2612_output_data.csv data/model_1613_output_data.csv data/model_2613_output_data.csv data/model_1614_output_data.csv data/model_2614_output_data.csv data/model_1615_output_data.csv data/model_2615_output_data.csv data/model_1616_output_data.csv data/model_2616_output_data.csv data/model_1617_output_data.csv data/model_2617_output_data.csv data/model_1618_output_data.csv data/model_2618_output_data.csv data/model_1619_output_data.csv data/model_2619_output_data.csv data/model_1620_output_data.csv data/model_2620_output_data.csv data/model_1621_output_data.csv data/model_2621_output_data.csv data/model_1622_output_data.csv data/model_2622_output_data.csv data/model_1623_output_data.csv data/model_2623_output_data.csv data/model_1624_output_data.csv data/model_2624_output_data.csv data/model_1625_output_data.csv data/model_2625_output_data.csv data/model_1626_output_data.csv data/model_2626_output_data.csv data/model_1627_output_data.csv data/model_2627_output_data.csv data/model_1628_output_data.csv data/model_2628_output_data.csv data/model_1629_output_data.csv data/model_2629_output_data.csv data/model_1630_output_data.csv data/model_2630_output_data.csv data/model_1631_output_data.csv data/model_2631_output_data.csv data/model_1632_output_data.csv data/model_2632_output_data.csv data/model_1633_output_data.csv data/model_2633_output_data.csv data/model_1634_output_data.csv data/model_2634_output_data.csv data/model_1635_output_data.csv data/model_2635_output_data.csv data/model_1636_output_data.csv data/model_2636_output_data.csv data/model_1637_output_data.csv data/model_2637_output_data.csv data/model_1638_output_data.csv data/model_2638_output_data.csv data/model_1639_output_data.csv data/model_2639_output_data.csv data/model_1640_output_data.csv data/model_2640_output_data.csv data/model_1641_output_data.csv data/model_2641_output_data.csv data/model_1642_output_data.csv data/model_2642_output_data.csv data/model_1643_output_data.csv data/model_2643_output_data.csv data/model_1644_output_data.csv data/model_2644_output_data.csv data/model_1645_output_data.csv data/model_2645_output_data.csv data/model_1646_output_data.csv data/model_2646_output_data.csv data/model_1647_output_data.csv data/model_2647_output_data.csv data/model_1648_output_data.csv data/model_2648_output_data.csv data/model_1649_output_data.csv data/model_2649_output_data.csv data/model_1650_output_data.csv data/model_2650_output_data.csv data/model_1651_output_data.csv data/model_2651_output_data.csv data/model_1652_output_data.csv data/model_2652_output_data.csv data/model_1653_output_data.csv data/model_2653_output_data.csv data/model_1654_output_data.csv data/model_2654_output_data.csv data/model_1655_output_data.csv data/model_2655_output_data.csv data/model_1656_output_data.csv data/model_2656_output_data.csv data/model_1657_output_data.csv data/model_2657_output_data.csv data/model_1658_output_data.csv data/model_2658_output_data.csv data/model_1659_output_data.csv data/model_2659_output_data.csv data/model_1660_output_data.csv data/model_2660_output_data.csv data/model_1661_output_data.csv data/model_2661_output_data.csv data/model_1662_output_data.csv data/model_2662_output_data.csv data/model_1663_output_data.csv data/model_2663_output_data.csv data/model_1664_output_data.csv data/model_2664_output_data.csv data/model_1665_output_data.csv data/model_2665_output_data.csv data/model_1666_output_data.csv data/model_2666_output_data.csv data/model_1667_output_data.csv data/model_2667_output_data.csv data/model_1668_output_data.csv data/model_2668_output_data.csv data/model_1669_output_data.csv data/model_2669_output_data.csv data/model_1670_output_data.csv data/model_2670_output_data.csv data/model_1671_output_data.csv data/model_2671_output_data.csv data/model_1672_output_data.csv data/model_2672_output_data.csv data/model_1673_output_data.csv data/model_2673_output_data.csv data/model_1674_output_data.csv data/model_2674_output_data.csv data/model_1675_output_data.csv data/model_2675_output_data.csv data/model_1676_output_data.csv data/model_2676_output_data.csv data/model_1677_output_data.csv data/model_2677_output_data.csv data/model_1678_output_data.csv data/model_2678_output_data.csv data/model_1679_output_data.csv data/model_2679_output_data.csv data/model_1680_output_data.csv data/model_2680_output_data.csv data/model_1681_output_data.csv data/model_2681_output_data.csv data/model_1682_output_data.csv data/model_2682_output_data.csv data/model_1683_output_data.csv data/model_2683_output_data.csv data/model_1684_output_data.csv data/model_2684_output_data.csv data/model_1685_output_data.csv data/model_2685_output_data.csv data/model_1686_output_data.csv data/model_2686_output_data.csv data/model_1687_output_data.csv data/model_2687_output_data.csv data/model_1688_output_data.csv data/model_2688_output_data.csv data/model_1689_output_data.csv data/model_2689_output_data.csv data/model_1690_output_data.csv data/model_2690_output_data.csv data/model_1691_output_data.csv data/model_2691_output_data.csv data/model_1692_output_data.csv data/model_2692_output_data.csv data/model_1693_output_data.csv data/model_2693_output_data.csv data/model_1694_output_data.csv data/model_2694_output_data.csv data/model_1695_output_data.csv data/model_2695_output_data.csv data/model_1696_output_data.csv data/model_2696_output_data.csv data/model_1697_output_data.csv data/model_2697_output_data.csv data/model_1698_output_data.csv data/model_2698_output_data.csv data/model_1699_output_data.csv data/model_2699_output_data.csv data/model_1700_output_data.csv data/model_2700_output_data.csv data/model_1701_output_data.csv data/model_2701_output_data.csv data/model_1702_output_data.csv data/model_2702_output_data.csv data/model_1703_output_data.csv data/model_2703_output_data.csv data/model_1704_output_data.csv data/model_2704_output_data.csv data/model_1705_output_data.csv data/model_2705_output_data.csv data/model_1706_output_data.csv data/model_2706_output_data.csv data/model_1707_output_data.csv data/model_2707_output_data.csv data/model_1708_output_data.csv data/model_2708_output_data.csv data/model_1709_output_data.csv data/model_2709_output_data.csv data/model_1710_output_data.csv data/model_2710_output_data.csv data/model_1711_output_data.csv data/model_2711_output_data.csv data/model_1712_output_data.csv data/model_2712_output_data.csv data/model_1713_output_data.csv data/model_2713_output_data.csv data/model_1714_output_data.csv data/model_2714_output_data.csv data/model_1715_output_data.csv data/model_2715_output_data.csv data/model_1716_output_data.csv data/model_2716_output_data.csv data/model_1717_output_data.csv data/model_2717_output_data.csv data/model_1718_output_data.csv data/model_2718_output_data.csv data/model_1719_output_data.csv data/model_2719_output_data.csv data/model_1720_output_data.csv data/model_2720_output_data.csv data/model_1721_output_data.csv data/model_2721_output_data.csv data/model_1722_output_data.csv data/model_2722_output_data.csv data/model_1723_output_data.csv data/model_2723_output_data.csv data/model_1724_output_data.csv data/model_2724_output_data.csv data/model_1725_output_data.csv data/model_2725_output_data.csv data/model_1726_output_data.csv data/model_2726_output_data.csv data/model_1727_output_data.csv data/model_2727_output_data.csv data/model_1728_output_data.csv data/model_2728_output_data.csv data/model_1729_output_data.csv data/model_2729_output_data.csv data/model_1730_output_data.csv data/model_2730_output_data.csv data/model_1731_output_data.csv data/model_2731_output_data.csv data/model_1732_output_data.csv data/model_2732_output_data.csv data/model_1733_output_data.csv data/model_2733_output_data.csv data/model_1734_output_data.csv data/model_2734_output_data.csv data/model_1735_output_data.csv data/model_2735_output_data.csv data/model_1736_output_data.csv data/model_2736_output_data.csv data/model_1737_output_data.csv data/model_2737_output_data.csv data/model_1738_output_data.csv data/model_2738_output_data.csv data/model_1739_output_data.csv data/model_2739_output_data.csv data/model_1740_output_data.csv data/model_2740_output_data.csv data/model_1741_output_data.csv data/model_2741_output_data.csv data/model_1742_output_data.csv data/model_2742_output_data.csv data/model_1743_output_data.csv data/model_2743_output_data.csv data/model_1744_output_data.csv data/model_2744_output_data.csv data/model_1745_output_data.csv data/model_2745_output_data.csv data/model_1746_output_data.csv data/model_2746_output_data.csv data/model_1747_output_data.csv data/model_2747_output_data.csv data/model_1748_output_data.csv data/model_2748_output_data.csv data/model_1749_output_data.csv data/model_2749_output_data.csv data/model_1750_output_data.csv data/model_2750_output_data.csv data/model_1751_output_data.csv data/model_2751_output_data.csv data/model_1752_output_data.csv data/model_2752_output_data.csv data/model_1753_output_data.csv data/model_2753_output_data.csv data/model_1754_output_data.csv data/model_2754_output_data.csv data/model_1755_output_data.csv data/model_2755_output_data.csv data/model_1756_output_data.csv data/model_2756_output_data.csv data/model_1757_output_data.csv data/model_2757_output_data.csv data/model_1758_output_data.csv data/model_2758_output_data.csv data/model_1759_output_data.csv data/model_2759_output_data.csv data/model_1760_output_data.csv data/model_2760_output_data.csv data/model_1761_output_data.csv data/model_2761_output_data.csv data/model_1762_output_data.csv data/model_2762_output_data.csv data/model_1763_output_data.csv data/model_2763_output_data.csv data/model_1764_output_data.csv data/model_2764_output_data.csv data/model_1765_output_data.csv data/model_2765_output_data.csv data/model_1766_output_data.csv data/model_2766_output_data.csv data/model_1767_output_data.csv data/model_2767_output_data.csv data/model_1768_output_data.csv data/model_2768_output_data.csv data/model_1769_output_data.csv data/model_2769_output_data.csv data/model_1770_output_data.csv data/model_2770_output_data.csv data/model_1771_output_data.csv data/model_2771_output_data.csv data/model_1772_output_data.csv data/model_2772_output_data.csv data/model_1773_output_data.csv data/model_2773_output_data.csv data/model_1774_output_data.csv data/model_2774_output_data.csv data/model_1775_output_data.csv data/model_2775_output_data.csv data/model_1776_output_data.csv data/model_2776_output_data.csv data/model_1777_output_data.csv data/model_2777_output_data.csv data/model_1778_output_data.csv data/model_2778_output_data.csv data/model_1779_output_data.csv data/model_2779_output_data.csv data/model_1780_output_data.csv data/model_2780_output_data.csv data/model_1781_output_data.csv data/model_2781_output_data.csv data/model_1782_output_data.csv data/model_2782_output_data.csv data/model_1783_output_data.csv data/model_2783_output_data.csv data/model_1784_output_data.csv data/model_2784_output_data.csv data/model_1785_output_data.csv data/model_2785_output_data.csv data/model_1786_output_data.csv data/model_2786_output_data.csv data/model_1787_output_data.csv data/model_2787_output_data.csv data/model_1788_output_data.csv data/model_2788_output_data.csv data/model_1789_output_data.csv data/model_2789_output_data.csv data/model_1790_output_data.csv data/model_2790_output_data.csv data/model_1791_output_data.csv data/model_2791_output_data.csv data/model_1792_output_data.csv data/model_2792_output_data.csv data/model_1793_output_data.csv data/model_2793_output_data.csv data/model_1794_output_data.csv data/model_2794_output_data.csv data/model_1795_output_data.csv data/model_2795_output_data.csv data/model_1796_output_data.csv data/model_2796_output_data.csv data/model_1797_output_data.csv data/model_2797_output_data.csv data/model_1798_output_data.csv data/model_2798_output_data.csv data/model_1799_output_data.csv data/model_2799_output_data.csv data/model_1800_output_data.csv data/model_2800_output_data.csv data/model_1801_output_data.csv data/model_2801_output_data.csv data/model_1802_output_data.csv data/model_2802_output_data.csv data/model_1803_output_data.csv data/model_2803_output_data.csv data/model_1804_output_data.csv data/model_2804_output_data.csv data/model_1805_output_data.csv data/model_2805_output_data.csv data/model_1806_output_data.csv data/model_2806_output_data.csv data/model_1807_output_data.csv data/model_2807_output_data.csv data/model_1808_output_data.csv data/model_2808_output_data.csv data/model_1809_output_data.csv data/model_2809_output_data.csv data/model_1810_output_data.csv data/model_2810_output_data.csv data/model_1811_output_data.csv data/model_2811_output_data.csv data/model_1812_output_data.csv data/model_2812_output_data.csv data/model_1813_output_data.csv data/model_2813_output_data.csv data/model_1814_output_data.csv data/model_2814_output_data.csv data/model_1815_output_data.csv data/model_2815_output_data.csv data/model_1816_output_data.csv data/model_2816_output_data.csv data/model_1817_output_data.csv data/model_2817_output_data.csv data/model_1818_output_data.csv data/model_2818_output_data.csv data/model_1819_output_data.csv data/model_2819_output_data.csv data/model_1820_output_data.csv data/model_2820_output_data.csv data/model_1821_output_data.csv data/model_2821_output_data.csv data/model_1822_output_data.csv data/model_2822_output_data.csv data/model_1823_output_data.csv data/model_2823_output_data.csv data/model_1824_output_data.csv data/model_2824_output_data.csv data/model_1825_output_data.csv data/model_2825_output_data.csv data/model_1826_output_data.csv data/model_2826_output_data.csv data/model_1827_output_data.csv data/model_2827_output_data.csv data/model_1828_output_data.csv data/model_2828_output_data.csv data/model_1829_output_data.csv data/model_2829_output_data.csv data/model_1830_output_data.csv data/model_2830_output_data.csv data/model_1831_output_data.csv data/model_2831_output_data.csv data/model_1832_output_data.csv data/model_2832_output_data.csv data/model_1833_output_data.csv data/model_2833_output_data.csv data/model_1834_output_data.csv data/model_2834_output_data.csv data/model_1835_output_data.csv data/model_2835_output_data.csv data/model_1836_output_data.csv data/model_2836_output_data.csv data/model_1837_output_data.csv data/model_2837_output_data.csv data/model_1838_output_data.csv data/model_2838_output_data.csv data/model_1839_output_data.csv data/model_2839_output_data.csv data/model_1840_output_data.csv data/model_2840_output_data.csv data/model_1841_output_data.csv data/model_2841_output_data.csv data/model_1842_output_data.csv data/model_2842_output_data.csv data/model_1843_output_data.csv data/model_2843_output_data.csv data/model_1844_output_data.csv data/model_2844_output_data.csv data/model_1845_output_data.csv data/model_2845_output_data.csv data/model_1846_output_data.csv data/model_2846_output_data.csv data/model_1847_output_data.csv data/model_2847_output_data.csv data/model_1848_output_data.csv data/model_2848_output_data.csv data/model_1849_output_data.csv data/model_2849_output_data.csv data/model_1850_output_data.csv data/model_2850_output_data.csv data/model_1851_output_data.csv data/model_2851_output_data.csv data/model_1852_output_data.csv data/model_2852_output_data.csv data/model_1853_output_data.csv data/model_2853_output_data.csv data/model_1854_output_data.csv data/model_2854_output_data.csv data/model_1855_output_data.csv data/model_2855_output_data.csv data/model_1856_output_data.csv data/model_2856_output_data.csv data/model_1857_output_data.csv data/model_2857_output_data.csv data/model_1858_output_data.csv data/model_2858_output_data.csv data/model_1859_output_data.csv data/model_2859_output_data.csv data/model_1860_output_data.csv data/model_2860_output_data.csv data/model_1861_output_data.csv data/model_2861_output_data.csv data/model_1862_output_data.csv data/model_2862_output_data.csv data/model_1863_output_data.csv data/model_2863_output_data.csv data/model_1864_output_data.csv data/model_2864_output_data.csv data/model_1865_output_data.csv data/model_2865_output_data.csv data/model_1866_output_data.csv data/model_2866_output_data.csv data/model_1867_output_data.csv data/model_2867_output_data.csv data/model_1868_output_data.csv data/model_2868_output_data.csv data/model_1869_output_data.csv data/model_2869_output_data.csv data/model_1870_output_data.csv data/model_2870_output_data.csv data/model_1871_output_data.csv data/model_2871_output_data.csv data/model_1872_output_data.csv data/model_2872_output_data.csv data/model_1873_output_data.csv data/model_2873_output_data.csv data/model_1874_output_data.csv data/model_2874_output_data.csv data/model_1875_output_data.csv data/model_2875_output_data.csv data/model_1876_output_data.csv data/model_2876_output_data.csv data/model_1877_output_data.csv data/model_2877_output_data.csv data/model_1878_output_data.csv data/model_2878_output_data.csv data/model_1879_output_data.csv data/model_2879_output_data.csv data/model_1880_output_data.csv data/model_2880_output_data.csv data/model_1881_output_data.csv data/model_2881_output_data.csv data/model_1882_output_data.csv data/model_2882_output_data.csv data/model_1883_output_data.csv data/model_2883_output_data.csv data/model_1884_output_data.csv data/model_2884_output_data.csv data/model_1885_output_data.csv data/model_2885_output_data.csv data/model_1886_output_data.csv data/model_2886_output_data.csv data/model_1887_output_data.csv data/model_2887_output_data.csv data/model_1888_output_data.csv data/model_2888_output_data.csv data/model_1889_output_data.csv data/model_2889_output_data.csv data/model_1890_output_data.csv data/model_2890_output_data.csv data/model_1891_output_data.csv data/model_2891_output_data.csv data/model_1892_output_data.csv data/model_2892_output_data.csv data/model_1893_output_data.csv data/model_2893_output_data.csv data/model_1894_output_data.csv data/model_2894_output_data.csv data/model_1895_output_data.csv data/model_2895_output_data.csv data/model_1896_output_data.csv data/model_2896_output_data.csv data/model_1897_output_data.csv data/model_2897_output_data.csv data/model_1898_output_data.csv data/model_2898_output_data.csv data/model_1899_output_data.csv data/model_2899_output_data.csv data/model_1900_output_data.csv data/model_2900_output_data.csv data/model_1901_output_data.csv data/model_2901_output_data.csv data/model_1902_output_data.csv data/model_2902_output_data.csv data/model_1903_output_data.csv data/model_2903_output_data.csv data/model_1904_output_data.csv data/model_2904_output_data.csv data/model_1905_output_data.csv data/model_2905_output_data.csv data/model_1906_output_data.csv data/model_2906_output_data.csv data/model_1907_output_data.csv data/model_2907_output_data.csv data/model_1908_output_data.csv data/model_2908_output_data.csv data/model_1909_output_data.csv data/model_2909_output_data.csv data/model_1910_output_data.csv data/model_2910_output_data.csv data/model_1911_output_data.csv data/model_2911_output_data.csv data/model_1912_output_data.csv data/model_2912_output_data.csv data/model_1913_output_data.csv data/model_2913_output_data.csv data/model_1914_output_data.csv data/model_2914_output_data.csv data/model_1915_output_data.csv data/model_2915_output_data.csv data/model_1916_output_data.csv data/model_2916_output_data.csv data/model_1917_output_data.csv data/model_2917_output_data.csv data/model_1918_output_data.csv data/model_2918_output_data.csv data/model_1919_output_data.csv data/model_2919_output_data.csv data/model_1920_output_data.csv data/model_2920_output_data.csv data/model_1921_output_data.csv data/model_2921_output_data.csv data/model_1922_output_data.csv data/model_2922_output_data.csv data/model_1923_output_data.csv data/model_2923_output_data.csv data/model_1924_output_data.csv data/model_2924_output_data.csv data/model_1925_output_data.csv data/model_2925_output_data.csv data/model_1926_output_data.csv data/model_2926_output_data.csv data/model_1927_output_data.csv data/model_2927_output_data.csv data/model_1928_output_data.csv data/model_2928_output_data.csv data/model_1929_output_data.csv data/model_2929_output_data.csv data/model_1930_output_data.csv data/model_2930_output_data.csv data/model_1931_output_data.csv data/model_2931_output_data.csv data/model_1932_output_data.csv data/model_2932_output_data.csv data/model_1933_output_data.csv data/model_2933_output_data.csv data/model_1934_output_data.csv data/model_2934_output_data.csv data/model_1935_output_data.csv data/model_2935_output_data.csv data/model_1936_output_data.csv data/model_2936_output_data.csv data/model_1937_output_data.csv data/model_2937_output_data.csv data/model_1938_output_data.csv data/model_2938_output_data.csv data/model_1939_output_data.csv data/model_2939_output_data.csv data/model_1940_output_data.csv data/model_2940_output_data.csv data/model_1941_output_data.csv data/model_2941_output_data.csv data/model_1942_output_data.csv data/model_2942_output_data.csv data/model_1943_output_data.csv data/model_2943_output_data.csv data/model_1944_output_data.csv data/model_2944_output_data.csv data/model_1945_output_data.csv data/model_2945_output_data.csv data/model_1946_output_data.csv data/model_2946_output_data.csv data/model_1947_output_data.csv data/model_2947_output_data.csv data/model_1948_output_data.csv data/model_2948_output_data.csv data/model_1949_output_data.csv data/model_2949_output_data.csv data/model_1950_output_data.csv data/model_2950_output_data.csv data/model_1951_output_data.csv data/model_2951_output_data.csv data/model_1952_output_data.csv data/model_2952_output_data.csv data/model_1953_output_data.csv data/model_2953_output_data.csv data/model_1954_output_data.csv data/model_2954_output_data.csv data/model_1955_output_data.csv data/model_2955_output_data.csv data/model_1956_output_data.csv data/model_2956_output_data.csv data/model_1957_output_data.csv data/model_2957_output_data.csv data/model_1958_output_data.csv data/model_2958_output_data.csv data/model_1959_output_data.csv data/model_2959_output_data.csv data/model_1960_output_data.csv data/model_2960_output_data.csv data/model_1961_output_data.csv data/model_2961_output_data.csv data/model_1962_output_data.csv data/model_2962_output_data.csv data/model_1963_output_data.csv data/model_2963_output_data.csv data/model_1964_output_data.csv data/model_2964_output_data.csv data/model_1965_output_data.csv data/model_2965_output_data.csv data/model_1966_output_data.csv data/model_2966_output_data.csv data/model_1967_output_data.csv data/model_2967_output_data.csv data/model_1968_output_data.csv data/model_2968_output_data.csv data/model_1969_output_data.csv data/model_2969_output_data.csv data/model_1970_output_data.csv data/model_2970_output_data.csv data/model_1971_output_data.csv data/model_2971_output_data.csv data/model_1972_output_data.csv data/model_2972_output_data.csv data/model_1973_output_data.csv data/model_2973_output_data.csv data/model_1974_output_data.csv data/model_2974_output_data.csv data/model_1975_output_data.csv data/model_2975_output_data.csv data/model_1976_output_data.csv data/model_2976_output_data.csv data/model_1977_output_data.csv data/model_2977_output_data.csv data/model_1978_output_data.csv data/model_2978_output_data.csv data/model_1979_output_data.csv data/model_2979_output_data.csv data/model_1980_output_data.csv data/model_2980_output_data.csv data/model_1981_output_data.csv data/model_2981_output_data.csv data/model_1982_output_data.csv data/model_2982_output_data.csv data/model_1983_output_data.csv data/model_2983_output_data.csv data/model_1984_output_data.csv data/model_2984_output_data.csv data/model_1985_output_data.csv data/model_2985_output_data.csv data/model_1986_output_data.csv data/model_2986_output_data.csv data/model_1987_output_data.csv data/model_2987_output_data.csv data/model_1988_output_data.csv data/model_2988_output_data.csv data/model_1989_output_data.csv data/model_2989_output_data.csv data/model_1990_output_data.csv data/model_2990_output_data.csv data/model_1991_output_data.csv data/model_2991_output_data.csv data/model_1992_output_data.csv data/model_2992_output_data.csv data/model_1993_output_data.csv data/model_2993_output_data.csv data/model_1994_output_data.csv data/model_2994_output_data.csv data/model_1995_output_data.csv data/model_2995_output_data.csv data/model_1996_output_data.csv data/model_2996_output_data.csv data/model_1997_output_data.csv data/model_2997_output_data.csv data/model_1998_output_data.csv data/model_2998_output_data.csv data/model_1999_output_data.csv data/model_2999_output_data.csv
Here is an example of the various model-generated datasets. Each model increases the stratigraphic layer thickness by 10 centimeters (0.01 m), and the models above show what the expected radar reflections would look like, given the input parameters.
cd data
/home/abraeley/Downloads/abraeley.github.io-main/data
If I use the distance equation shown above to convert the time to get radar return signals to depth/distance, it becomes clear that this data needs to be cleaned further:
model1000 = pd.read_csv('model_1000_output_data.csv', sep=",")
model1000["Distance"] = (model1000["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
model1000.head(),model1000.tail()
( Time (s) power (dB) amplitude (real) amplitude (imag) Distance 0 -0.000043 -58.708651 -3.754318e-09 2.807403e-10 -3620.756693 1 -0.000042 -58.848845 3.693893e-09 -2.804356e-10 -3619.052407 2 -0.000042 -58.934609 -3.661016e-09 2.282432e-10 -3617.348120 3 -0.000042 -58.868730 3.692362e-09 -1.651007e-10 -3615.643834 4 -0.000042 -58.671926 -3.777640e-09 1.533726e-10 -3613.939547, Time (s) power (dB) amplitude (real) amplitude (imag) Distance 4245 0.000042 -58.924782 3.661466e-09 -2.815716e-10 3613.939547 4246 0.000042 -58.975319 -3.645935e-09 1.917198e-10 3615.643834 4247 0.000042 -58.839233 3.705903e-09 -1.420481e-10 3617.348120 4248 0.000042 -58.681094 -3.773148e-09 1.652132e-10 3619.052407 4249 0.000043 -58.630476 3.791886e-09 -2.297088e-10 3620.756693)
Firstly, I should not have negative distances. Secondly, I set all of the models to have an approximate depth of 2000 meters. It is an artifact of the 1D SHARAD Simulator that extra data is created "outside" the bounds of the model. In order to avoid confusion (for us, as well as for the neural network) this data needs to be ignored/removed. Below I import several models and calculate the indeces for the surface of the ice, as well as for the basal reflector at the bottom of the ice. Then, the plots contain only the information pertinent to us:
cd /home/abraeley/Downloads/abraeley.github.io-main/data
/home/abraeley/Downloads/abraeley.github.io-main/data
model1000 = pd.read_csv('model_1000_output_data.csv', sep=",")
model1300 = pd.read_csv('model_1300_output_data.csv', sep=",")
model1600 = pd.read_csv('model_1600_output_data.csv', sep=",")
model1900 = pd.read_csv('model_1900_output_data.csv', sep=",")
model2100 = pd.read_csv('model_2100_output_data.csv', sep=",")
model2400 = pd.read_csv('model_2400_output_data.csv', sep=",")
model2700 = pd.read_csv('model_2700_output_data.csv', sep=",")
model2999 = pd.read_csv('model_2999_output_data.csv', sep=",")
# Clean data (remove negative times)
# Model1000
model1000["Distance"] = (model1000["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1000.loc[model1000["Distance"] >= 0].index[0])
basalIndex = int(model1000.loc[model1000["Distance"] >= 2000].index[0])
model1000 = model1000.loc[surfaceIndex:basalIndex,]
# Model 1300
model1300["Distance"] = (model1300["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1300.loc[model1300["Distance"] >= 0].index[0])
basalIndex = int(model1300.loc[model1300["Distance"] >= 2000].index[0])
model1300 = model1300.loc[surfaceIndex:basalIndex,]
# Model 1600
model1600["Distance"] = (model1600["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1600.loc[model1600["Distance"] >= 0].index[0])
basalIndex = int(model1600.loc[model1600["Distance"] >= 2000].index[0])
model1600 = model1600.loc[surfaceIndex:basalIndex,]
# Model 1900
model1900["Distance"] = (model1900["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1900.loc[model1900["Distance"] >= 0].index[0])
basalIndex = int(model1900.loc[model1900["Distance"] >= 2000].index[0])
model1900 = model1900.loc[surfaceIndex:basalIndex,]
# Model 2100
model2100["Distance"] = (model2100["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model2100.loc[model2100["Distance"] >= 0].index[0])
basalIndex = int(model2100.loc[model2100["Distance"] >= 2000].index[0])
model2100 = model2100.loc[surfaceIndex:basalIndex,]
# Model 2400
model2400["Distance"] = (model2400["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model2400.loc[model2400["Distance"] >= 0].index[0])
basalIndex = int(model2400.loc[model2400["Distance"] >= 2000].index[0])
model2400 = model2400.loc[surfaceIndex:basalIndex,]
# Model 2700
model2700["Distance"] = (model2700["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model2700.loc[model2700["Distance"] >= 0].index[0])
basalIndex = int(model2700.loc[model2700["Distance"] >= 2000].index[0])
model2700 = model2700.loc[surfaceIndex:basalIndex,]
# Model 2999
model2999["Distance"] = (model2999["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model2999.loc[model2999["Distance"] >= 0].index[0])
basalIndex = int(model2999.loc[model2999["Distance"] >= 2000].index[0])
model2999 = model2999.loc[surfaceIndex:basalIndex,]
# Plotting each of the above models
fig, axes = plt.subplots(2, 4, figsize=(12,16))
fig.suptitle('Model-Generated Data (15-25 MHz)', fontsize=16)
mod1000Plot = model1000.plot(ax=axes[0,0], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="Time (s)", legend=False)
mod1000Plot.set_ylim(0, 0.0000240)
mod1000Plot.set_xlim(-60, 5)
mod1000Plot.invert_yaxis()
mod1000Plot.set_title("Model 1000 (10-m Intervals)", fontsize=6.5)
mod1000Plot.axhline(y=1.5e-5,color='r',linestyle='-')
mod1300Plot = model1300.plot(ax=axes[0,1], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod1300Plot.set_ylim(0, 0.0000240)
mod1300Plot.set_xlim(-60, 5)
mod1300Plot.invert_yaxis()
mod1300Plot.set_title("Model 1300 (13 m Layers)", fontsize=6.5)
mod1300Plot.axhline(y=0.8e-5,color='r',linestyle='-')
mod1600Plot = model1600.plot(ax=axes[0,2], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod1600Plot.set_ylim(0, 0.0000240)
mod1600Plot.set_xlim(-60, 5)
mod1600Plot.invert_yaxis()
mod1600Plot.set_title("Model 1600 (16 m Layers)", fontsize=6.5)
mod1600Plot.axhline(y=1.1e-5,color='r',linestyle='-')
mod1900Plot = model1900.plot(ax=axes[0,3], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod1900Plot.set_ylim(0, 0.0000240)
mod1900Plot.set_xlim(-60, 5)
mod1900Plot.invert_yaxis()
mod1900Plot.set_title("Model 1900 (19 m Layers)", fontsize=6.5)
mod1900Plot.axhline(y=1.15e-5,color='r',linestyle='-')
mod2100Plot = model2100.plot(ax=axes[1,0], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="Time (s)", legend=False)
mod2100Plot.set_ylim(0, 0.0000240)
mod2100Plot.set_xlim(-60, 5)
mod2100Plot.invert_yaxis()
mod2100Plot.set_title("Model 2100 (21 m Layers)", fontsize=6.5)
mod2100Plot.axhline(y=1.2e-5,color='r',linestyle='-')
mod2400Plot = model2400.plot(ax=axes[1,1], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod2400Plot.set_ylim(0, 0.0000240)
mod2400Plot.set_xlim(-60, 5)
mod2400Plot.invert_yaxis()
mod2400Plot.set_title("Model 2400 (24 m Layers)", fontsize=6.5)
mod2400Plot.axhline(y=1.4e-5,color='r',linestyle='-')
mod2700Plot = model2700.plot(ax=axes[1,2], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod2700Plot.set_ylim(0, 0.0000240)
mod2700Plot.set_xlim(-60, 5)
mod2700Plot.invert_yaxis()
mod2700Plot.set_title("Model 2700 (27 m Layers)", fontsize=6.5)
mod2700Plot.axhline(y=1.6e-5,color='r',linestyle='-')
mod2999Plot = model2999.plot(ax=axes[1,3], x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False)
mod2999Plot.set_ylim(0, 0.0000240)
mod2999Plot.set_xlim(-60, 5)
mod2999Plot.invert_yaxis()
mod2999Plot.set_title("Model 2999 (~30 m Layers)", fontsize=6.5)
mod2999Plot.axhline(y=1.8e-5,color='r',linestyle='-')
<matplotlib.lines.Line2D at 0x7f5b39233940>
cd /home/abraeley/Downloads/abraeley.github.io-main/data
/home/abraeley/Downloads/abraeley.github.io-main/data/model1600
# Plotting each of the above models
fig, ax = plt.subplots(figsize=(18,24))
fig.suptitle('Model-Generated Data (15-25 MHz)', fontsize=16)
model1600 = pd.read_csv('model_1600_output_data.csv', sep=",")
# Model 1600
model1600["Distance"] = (model1600["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1600.loc[model1600["Distance"] >= 0].index[0])
basalIndex = int(model1600.loc[model1600["Distance"] >= 2000].index[0])
model1600 = model1600.loc[surfaceIndex:basalIndex,]
# Plotting each of the above models
#fig, axes = plt.subplots(figsize=(12,16))
#fig.suptitle('Model-Generated Data (15-25 MHz)', fontsize=16)
mod1600Plot = model1600.plot(ax=ax, x='power (dB)', y='Time (s)', xlabel="Power (dB)", color='g', ylabel="", label='Combined (15-25 MHz)', legend=True)
#mod1600Plot.set_ylim(0, 0.0000240)
#mod1600Plot.set_xlim(-60, 5)
#mod1600Plot.invert_yaxis()
#mod1600Plot.set_title("Model 1600 (16 m Layers)", fontsize=6.5)
#mod1600Plot.axhline(y=1.1e-5,color='r',linestyle='-')
model1600_L = pd.read_csv('model_1600_L_output_data.csv', sep=",")
# Model 1600
model1600_L["Distance"] = (model1600_L["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1600_L.loc[model1600_L["Distance"] >= 0].index[0])
basalIndex = int(model1600_L.loc[model1600_L["Distance"] >= 2000].index[0])
model1600_L = model1600_L.loc[surfaceIndex:basalIndex,]
mod1600Plot = model1600_L.plot(ax=ax, x='power (dB)', y='Time (s)', xlabel="Power (dB)", color='r', ylabel="", label='Low (15-20 MHz)', legend=True)
#mod1600Plot.set_ylim(0, 0.0000240)
#mod1600Plot.set_xlim(-60, 5)
#mod1600Plot.invert_yaxis()
#mod1600Plot.set_title("Model L 1600 (16 m Layers)", fontsize=6.5)
#mod1600Plot.axhline(y=1.1e-5,color='r',linestyle='-')
model1600_H = pd.read_csv('model_1600_H_output_data.csv', sep=",")
# Model 1600
model1600_H["Distance"] = (model1600_H["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model1600_H.loc[model1600_H["Distance"] >= 0].index[0])
basalIndex = int(model1600_H.loc[model1600_H["Distance"] >= 2000].index[0])
model1600_H = model1600_H.loc[surfaceIndex:basalIndex,]
mod1600Plot = model1600_H.plot(ax=ax, x='power (dB)', y='Time (s)', xlabel="Power (dB)", color='b', ylabel="Time (s)", label='High (20-25 MHz)', legend=True)
mod1600Plot.set_ylim(0, 0.0000240)
mod1600Plot.set_xlim(-60, 5)
mod1600Plot.set_xlabel('power (dB)',fontsize=24)
mod1600Plot.set_ylabel('Time (s)',fontsize=24)
mod1600Plot.legend(fontsize=24)
mod1600Plot.invert_yaxis()
mod1600Plot.set_title("Model 1600 (16 m Layers)", fontsize=15)
mod1600Plot.axhline(y=1.1e-5,color='r',linestyle='-')
<matplotlib.lines.Line2D at 0x7fdd2822e160>
Models with 16-m spacing between layers, with the figures separated by subband grouping:
Models with 100-m spacing between layers, with the figures separated by subband grouping:
The above plots show the power (/reflections) versus time (/distance). Since the simulator is 1-dimensional, this is equivalent to making a power versus time figure directly from a radargram of real radar sounder data, using a column of pixels traversing down the radargram.
Horizontal lines are plotted in regions where a behavioral change can be seen in the radar reflection patterns. This change seems to be one where reflections begin to favor shorter-wavelength reflections, and longer wavelength noise. The general trend seems to be in favor of increasing visibility to radar as a function of increasing layer thickness. The bahavioral change does not come from "noise" as the model was given a noise floor od -101 dB (noise below -100 dB is ignored and not integrated into the model-generated data).
These seem to be some sort of radar "echo" that the lower-frequency subband is more sensitive to for some reason. So this EDA has been helpful for me to narrow in on what subset of the data would be perhaps more reliable to train the neural network off of.
I also plotted above two sets of three graphs showing a 16-meter layer spacing interval, and a 100-m interval respectively. Each of the sets has the combined 15-25 MHz bandwidth plot, as well as a lower frequency 15-20 MHz figure, and a higher frequency 20-25 MHz figure. Splitting the data up this way illustrates how much more sensitive the lower frequency subband is to the echoing.
To show that reflections are largely homogeneous across different layer-thickness regimes, the power values of the various reflections can be aggregated and plotted in a box plot:
boxFrame = pd.DataFrame()
boxFrame["Model 1000"] = model1000["power (dB)"]
boxFrame["Model 1300"] = model1300["power (dB)"]
boxFrame["Model 1600"] = model1600["power (dB)"]
boxFrame["Model 1900"] = model1900["power (dB)"]
boxFrame["Model 2100"] = model2100["power (dB)"]
boxFrame["Model 2400"] = model2400["power (dB)"]
boxFrame["Model 2700"] = model2700["power (dB)"]
boxFrame["Model 2999"] = model2999["power (dB)"]
plots = boxFrame.boxplot(grid=False, rot=45, fontsize=15)
plots.set_ylabel("Power (dB)")
plots.set_title("Reflections Across Layer-Thickness Regimes")
Text(0.5, 1.0, 'Reflections Across Layer-Thickness Regimes')
Looking at the time versus power plots above, it seems as though the power of the reflections declines the deeper into the ice you go. To verify this I will compare some of the surface reflection power values to those at the base of the ice caps:
surfaceReflections = pd.DataFrame()
basalReflections = pd.DataFrame()
# For Model 1000 (10-m thick layers)
surfaceStart = int(model1000.loc[model1000["Distance"] >= 0].index[0])
surfaceEnd = int(model1000.loc[model1000["Distance"] >= 10].index[0])
basalStart = int(model1000.loc[model1000["Distance"] >= 1990].index[0])
basalEnd = int(model1000.loc[model1000["Distance"] >= 2000].index[0])
surfaceReflections["Model 1000"] = model1000["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 1000"] = model1000["power (dB)"].loc[basalStart:basalEnd,]
# For Model 1300 (13-m thick layers)
surfaceStart = int(model1300.loc[model1300["Distance"] >= 0].index[0])
surfaceEnd = int(model1300.loc[model1300["Distance"] >= 13].index[0])
basalStart = int(model1300.loc[model1300["Distance"] >= 1987].index[0])
basalEnd = int(model1300.loc[model1300["Distance"] >= 2000].index[0])
surfaceReflections["Model 1300"] = model1300["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 1300"] = model1300["power (dB)"].loc[basalStart:basalEnd,]
# For Model 1600 (16-m thick layers)
surfaceStart = int(model1600.loc[model1600["Distance"] >= 0].index[0])
surfaceEnd = int(model1600.loc[model1600["Distance"] >= 16].index[0])
basalStart = int(model1600.loc[model1600["Distance"] >= 1984].index[0])
basalEnd = int(model1600.loc[model1600["Distance"] >= 2000].index[0])
surfaceReflections["Model 1600"] = model1600["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 1600"] = model1600["power (dB)"].loc[basalStart:basalEnd,]
# For Model 1900 (19-m thick layers)
surfaceStart = int(model1900.loc[model1900["Distance"] >= 0].index[0])
surfaceEnd = int(model1900.loc[model1900["Distance"] >= 19].index[0])
basalStart = int(model1900.loc[model1900["Distance"] >= 1981].index[0])
basalEnd = int(model1900.loc[model1900["Distance"] >= 2000].index[0])
surfaceReflections["Model 1900"] = model1900["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 1900"] = model1900["power (dB)"].loc[basalStart:basalEnd,]
# For Model 2100 (21-m thick layers)
surfaceStart = int(model2100.loc[model2100["Distance"] >= 0].index[0])
surfaceEnd = int(model2100.loc[model2100["Distance"] >= 21].index[0])
basalStart = int(model2100.loc[model2100["Distance"] >= 1979].index[0])
basalEnd = int(model2100.loc[model2100["Distance"] >= 2000].index[0])
surfaceReflections["Model 2100"] = model2100["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 2100"] = model2100["power (dB)"].loc[basalStart:basalEnd,]
# For Model 2400 (24-m thick layers)
surfaceStart = int(model2400.loc[model2400["Distance"] >= 0].index[0])
surfaceEnd = int(model2400.loc[model2400["Distance"] >= 24].index[0])
basalStart = int(model2400.loc[model2400["Distance"] >= 1976].index[0])
basalEnd = int(model2400.loc[model2400["Distance"] >= 2000].index[0])
surfaceReflections["Model 2400"] = model2400["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 2400"] = model2400["power (dB)"].loc[basalStart:basalEnd,]
# For Model 2700 (27-m thick layers)
surfaceStart = int(model2700.loc[model2700["Distance"] >= 0].index[0])
surfaceEnd = int(model2700.loc[model2700["Distance"] >= 27].index[0])
basalStart = int(model2700.loc[model2700["Distance"] >= 1973].index[0])
basalEnd = int(model2700.loc[model2700["Distance"] >= 2000].index[0])
surfaceReflections["Model 2700"] = model2700["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 2700"] = model2700["power (dB)"].loc[basalStart:basalEnd,]
# For Model 2999 (~30-m thick layers)
surfaceStart = int(model2999.loc[model2999["Distance"] >= 0].index[0])
surfaceEnd = int(model2999.loc[model2999["Distance"] >= 30].index[0])
basalStart = int(model2999.loc[model2999["Distance"] >= 1970].index[0])
basalEnd = int(model2999.loc[model2999["Distance"] >= 2000].index[0])
surfaceReflections["Model 2999"] = model2999["power (dB)"].loc[surfaceStart:surfaceEnd,]
basalReflections["Model 2999"] = model2999["power (dB)"].loc[basalStart:basalEnd,]
surfacePlots = surfaceReflections.boxplot(grid=False, rot=45, fontsize=15)
surfacePlots.set_ylabel("Power (dB)")
surfacePlots.set_title("Reflections")
basalPlots = basalReflections.boxplot(grid=False, rot=45, fontsize=15)
basalPlots.set_ylabel("Power (dB)")
Text(0, 0.5, 'Power (dB)')
This agrees with the power versus time plots above. There is a clear distinction between the dispersion of power values at the surface reflections across all models, and their respective basal reflection power disperion. This is to be expected. As electromagnetic radiation hits a new interface (the icy surface), some power is reflected, some is absorbed, and some is transmitted. As the light/radiation transmits down through the ice, it will eventually encounter material with a new dielectric constant/permittivity value. This would be a new interface where we would get another instance of reflection, absorption, and then transmission. The more stratigraphic layers with distinct dielectric values, the more this will occur. With every instance, more energy is lost from the overall radar signal. This is radar attenuation.
This is good in one sense, and bad in another. It is good because the data produced by the models seem to follow the physics we expect. It is bad, however, because this means that the radar signal will attenuate (weaken) as a function of time/depth. There may therefore be a danger of the signal-to-noise ratio becoming too low, potentially complicating the ability to deconvolve stratigraphy beyond a certain point.
Now that the data has been read in and processed, we can begin setting up the neural network. The tool that we will use for this work is going to be Scikit Learn's MLPClassifier (Multi-layer perceptron classifier), a form of neural network. This tool will take in a vertical column of pixels from a radargram image, which have reflection power values associated with them as you traverse down. Each pixel is one of the inputs to the neural network:
The output, at least for the initial work, will be to classify whether or not a given input pixel is a layer interface. Not all layer interfaces appear in a given power versus time plot, radargram, etc. Nor are all reflections layer interfaces (there are radar "echoes").
To analyze the results, I will be creating pairplots between the output variable and doing some statistics of the signal (number of readings X standard deviations above the mean in the series).
Because the training data (model-generated data above) does not output in neat intervals in accordance with the assignment of "layer" interfaces, (i.e. many of the rows are at distances like "0.852143 meters"). If a layer is to be labelled at intervals of 10 meters, than this means I need to define when it is appropriate to label a row as a layer interface. To this end, I am going to arbitrarily use a round-up, round-down method. That is to say that if layer interfaces occur at 10-meter intervals, and there is a row at a distance of 9.47 meters, it will round down to 9.0 and not be labelled as a layer. If it is 9.53 however, it will round up to 10 and be labelled as a layer interface. This is an interim strategy to allow forward movement of this research, but should be further scrutinized and improved upon if possible.
Below I import my training labels (which includes both layer intervals, as well as associated dielectric constant values (eps) for expansion of this model in the future). I created these when I ran the shell script to iteratively run each of my models above:
cd model1600/
/home/abraeley/Downloads/abraeley.github.io-main/data/model1600
ls
model_1600_H_model.csv model_1600_L_output_figure.png model_1600_H_output_data.csv model_1600_model.csv model_1600_H_output_figure.png model_1600_output_data.csv model_1600_L_model.csv model_1600_output_figure.png model_1600_L_output_data.csv test/
labels1000 = pd.read_csv('model_1000_model.csv', sep=",")
labels1300 = pd.read_csv('model_1300_model.csv', sep=",")
labels1600 = pd.read_csv('model_1600_model.csv', sep=",")
labels1900 = pd.read_csv('model_1900_model.csv', sep=",")
labels2100 = pd.read_csv('model_2100_model.csv', sep=",")
labels2400 = pd.read_csv('model_2400_model.csv', sep=",")
labels2700 = pd.read_csv('model_2700_model.csv', sep=",")
labels2999 = pd.read_csv('model_2999_model.csv', sep=",")
labels1300
Depth (m) | eps | |
---|---|---|
0 | 0.0 | 2.8 |
1 | 13.0 | 2.8 |
2 | 13.0 | 3.4 |
3 | 26.0 | 3.4 |
4 | 26.0 | 2.8 |
... | ... | ... |
300 | 1950.0 | 2.8 |
301 | 1963.0 | 2.8 |
302 | 1963.0 | 3.4 |
303 | 1976.0 | 3.4 |
304 | 1976.0 | 2.8 |
305 rows × 2 columns
labels1600 = pd.read_csv('model_1600_model.csv', sep=",")
labels1600_L = pd.read_csv('model_1600_L_model.csv', sep=",")
labels1600_H = pd.read_csv('model_1600_H_model.csv', sep=",")
In order to assign the training labels I am: 1) Creating a new column "Layer Interface" to contain the label
2) Reading in the model_X_model.csv files for each repsective model. These files contain a column of for layers, and a column for a respective layer dielectric constant value.
3) Using a lambda function in order to find the depth of the first layer interface. This first depth is technically the difference between the first layer interface and the surface of the ice. Since the surface of the ice is zero m however, we can simply take the distance of the first layer interface to be the layer interval. The remaining intervals need to be calculated by using the "model_X_model.csv" output files that were generated when I ran the shell script above to generate the model data. Each time the 1D Simulator is run, it generates the output data file as well as the model_X_model.csv file, which essentially contains the input parameteres for the simulator: number of layers, their respective thicknesses and their respective dielectric constant values. By iterating down the rows of this file all traiing data can be correctly assigned to the models. As I have a distance column calculated already, we can go row by row to find values that fit the interval. Rather than looking for exact values I am rounding the rows up/down to their nearest integer. If the rounded integer is divisible by the layer interval distance, than it is labeled "True" for "true, this is a Layer Interface".
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
# If a distance is within 0.5 of a number divisible by whatever the layer thickness interval is, it is labelled as a layer interface row
model1000["Layer Interface"] = model1000["Distance"].apply(lambda x: True if round(x) % (labels1000["Depth (m)"][1]-labels1000["Depth (m)"][0]) == 0 else False)
model1300["Layer Interface"] = model1300["Distance"].apply(lambda x: True if round(x) % (labels1300["Depth (m)"][1]-labels1300["Depth (m)"][0]) == 0 else False)
model1600["Layer Interface"] = model1600["Distance"].apply(lambda x: True if round(x) % (labels1600["Depth (m)"][1]-labels1600["Depth (m)"][0]) == 0 else False)
model1900["Layer Interface"] = model1900["Distance"].apply(lambda x: True if round(x) % (labels1900["Depth (m)"][1]-labels1900["Depth (m)"][0]) == 0 else False)
model2100["Layer Interface"] = model2100["Distance"].apply(lambda x: True if round(x) % (labels2100["Depth (m)"][1]-labels2100["Depth (m)"][0]) == 0 else False)
model2400["Layer Interface"] = model2400["Distance"].apply(lambda x: True if round(x) % (labels2400["Depth (m)"][1]-labels2400["Depth (m)"][0]) == 0 else False)
model2700["Layer Interface"] = model2700["Distance"].apply(lambda x: True if round(x) % (labels2700["Depth (m)"][1]-labels2700["Depth (m)"][0]) == 0 else False)
model2999["Layer Interface"] = model2999["Distance"].apply(lambda x: True if round(x) % (labels2999["Depth (m)"][1]-labels2999["Depth (m)"][0]) == 0 else False)
model1300.head(20)
Time (s) | power (dB) | amplitude (real) | amplitude (imag) | Distance | Layer Interface | |
---|---|---|---|---|---|---|
2125 | 1.000235e-08 | -0.147417 | -1.666096e-06 | 1.993510e-06 | 0.852143 | False |
2126 | 3.000706e-08 | -0.404372 | -5.757337e-07 | -2.455749e-06 | 2.556430 | False |
2127 | 5.001177e-08 | -0.769617 | 2.211578e-06 | 9.787317e-07 | 4.260716 | False |
2128 | 7.001647e-08 | -1.230902 | -2.009123e-06 | 1.105904e-06 | 5.965003 | False |
2129 | 9.002118e-08 | -1.781103 | 3.302092e-07 | -2.127137e-06 | 7.669289 | False |
2130 | 1.100259e-07 | -2.418547 | 1.365499e-06 | 1.461709e-06 | 9.373576 | False |
2131 | 1.300306e-07 | -3.140816 | -1.835281e-06 | 1.410067e-07 | 11.077862 | False |
2132 | 1.500353e-07 | -3.935319 | 9.585032e-07 | -1.379482e-06 | 12.782149 | True |
2133 | 1.700400e-07 | -4.772496 | 4.087090e-07 | 1.469673e-06 | 14.486435 | False |
2134 | 1.900447e-07 | -5.606803 | -1.260546e-06 | -5.755823e-07 | 16.190722 | False |
2135 | 2.100494e-07 | -6.387526 | 1.147651e-06 | -5.359235e-07 | 17.895008 | False |
2136 | 2.300541e-07 | -7.075934 | -3.150194e-07 | 1.126902e-06 | 19.599295 | False |
2137 | 2.500588e-07 | -7.659519 | -6.076298e-07 | -9.098224e-07 | 21.303581 | False |
2138 | 2.700635e-07 | -8.153616 | 1.026840e-06 | 1.177706e-07 | 23.007868 | False |
2139 | 2.900683e-07 | -8.588442 | -7.073594e-07 | 6.827410e-07 | 24.712154 | False |
2140 | 3.100730e-07 | -8.989955 | -9.381770e-08 | -9.339930e-07 | 26.416441 | True |
2141 | 3.300777e-07 | -9.368077 | 7.700690e-07 | 4.633204e-07 | 28.120727 | False |
2142 | 3.500824e-07 | -9.721964 | -7.900598e-07 | 3.468056e-07 | 29.825014 | False |
2143 | 3.700871e-07 | -10.058237 | 1.473998e-07 | -8.168679e-07 | 31.529300 | False |
2144 | 3.900918e-07 | -10.401699 | 5.836262e-07 | 5.440492e-07 | 33.233587 | False |
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
model1600["Layer Interface"] = model1600["Distance"].apply(lambda x: True if round(x) % (labels1600["Depth (m)"][1]-labels1600["Depth (m)"][0]) == 0 else False)
As shown above, for a layer interval of 13 meters (the interval for model1300), a distance of 12.782149 meters (row 2132) and a distance of 26.416441 meters (row 2140) are both recognized as being close enough to the known location of a stratigraphic layer, that they are labelled as true. It is hoped that the neural network will be able to build an association between the time, and respective power values such that it will be able to then correctly assign the locations of stratigraphic layers in the raw SHARAD radar sounder data.'
The complete figure for model1300 looks like this with the stratigraphy assigned in the correct place:
mod1300Plot = model1300.plot(x='power (dB)', y='Time (s)', xlabel="Power (dB)", ylabel="", legend=False, figsize=(6,10))
mod1300Plot.set_ylim(0, 0.0000240)
mod1300Plot.set_xlim(-60, 5)
mod1300Plot.invert_yaxis()
mod1300Plot.set_title("Model 1300 With Associated Stratigraphy")
model1300["Layer Interface"] = model1300["Distance"].apply(lambda x: True if round(x) % (labels1300["Depth (m)"][1]-labels1300["Depth (m)"][0]) == 0 else False)
surfaceStart = int(model1300.loc[model1300["Distance"] >= 0].index[0])
count=0
for row in range(len(model1300)):
if model1300["Layer Interface"].iloc[count] == True:
#print(model1300["Distance"].iloc[count])
mod1300Plot.axhline(y=model1300["Time (s)"].iloc[count],color='r',linestyle='-')
count+=1
This training data makes was scripted to automatically generate models which have preset layer boundaries at consistent intervals. This allows me to run the entire process from data generation, data processing, model integration of the data, labeling of the training data, as well as training of the neural network. A concern I have leading into this preliminary attempt to deconvolve the stratigraphy of the NPLD is that the neural network will recognize only the interval distance between layer interfaces (which is consistent for this initial run).
Furthermore, I will run the initial training sequence using a single model-generated dataset. This is for ease of confirming the pipeline itself and more training sets will rapidly be integrated into the
After validating the entire data pipeline through to the running of the neural network, I will begin reconstructing the pipeline itself to holistically integrate the entirety of the data I have generated. It will not be until this point that I hope for trully meaningful data-trained results.
Finally, in the future I will also want to integrate dielectric constants into the system, however I will first test this approach with layer interfaces only.
cd /home/abraeley/Downloads/abraeley.github.io-main/neuralNetworkTest
/home/abraeley/Downloads/abraeley.github.io-main/neuralNetworkTest
ls
radar_FM1D_refMethod.py* runModels.sh
# Set to run for a series of different layer sizes
# with a depth of 2000 m,
# modelCount set to 5 so the model name matches the size of layer interval in m,
# an iteration step size of 1 m,
# a starting layer size of 5 m,
# and the bandwidth to calculate for is the high freq sub-band (20-25 MHz).
# The singleModel parameter is set to 0 so it iterates up to the depth, creating a model for ever 1 m interval.
generateModels(2000, 5, 1, 5, 2, 0)
# This generates 1995 models (5 m layer intervals, up to a 2000 m interval size [with the total depth also being 2000 m]
ls
model_1000_H.txt model_1451_H.txt model_1901_H.txt model_555_H.txt
model_1001_H.txt model_1452_H.txt model_1902_H.txt model_556_H.txt
model_1002_H.txt model_1453_H.txt model_1903_H.txt model_557_H.txt
model_1003_H.txt model_1454_H.txt model_1904_H.txt model_558_H.txt
model_1004_H.txt model_1455_H.txt model_1905_H.txt model_559_H.txt
model_1005_H.txt model_1456_H.txt model_1906_H.txt model_55_H.txt
model_1006_H.txt model_1457_H.txt model_1907_H.txt model_560_H.txt
model_1007_H.txt model_1458_H.txt model_1908_H.txt model_561_H.txt
model_1008_H.txt model_1459_H.txt model_1909_H.txt model_562_H.txt
model_1009_H.txt model_145_H.txt model_190_H.txt model_563_H.txt
model_100_H.txt model_1460_H.txt model_1910_H.txt model_564_H.txt
model_1010_H.txt model_1461_H.txt model_1911_H.txt model_565_H.txt
model_1011_H.txt model_1462_H.txt model_1912_H.txt model_566_H.txt
model_1012_H.txt model_1463_H.txt model_1913_H.txt model_567_H.txt
model_1013_H.txt model_1464_H.txt model_1914_H.txt model_568_H.txt
model_1014_H.txt model_1465_H.txt model_1915_H.txt model_569_H.txt
model_1015_H.txt model_1466_H.txt model_1916_H.txt model_56_H.txt
model_1016_H.txt model_1467_H.txt model_1917_H.txt model_570_H.txt
model_1017_H.txt model_1468_H.txt model_1918_H.txt model_571_H.txt
model_1018_H.txt model_1469_H.txt model_1919_H.txt model_572_H.txt
model_1019_H.txt model_146_H.txt model_191_H.txt model_573_H.txt
model_101_H.txt model_1470_H.txt model_1920_H.txt model_574_H.txt
model_1020_H.txt model_1471_H.txt model_1921_H.txt model_575_H.txt
model_1021_H.txt model_1472_H.txt model_1922_H.txt model_576_H.txt
model_1022_H.txt model_1473_H.txt model_1923_H.txt model_577_H.txt
model_1023_H.txt model_1474_H.txt model_1924_H.txt model_578_H.txt
model_1024_H.txt model_1475_H.txt model_1925_H.txt model_579_H.txt
model_1025_H.txt model_1476_H.txt model_1926_H.txt model_57_H.txt
model_1026_H.txt model_1477_H.txt model_1927_H.txt model_580_H.txt
model_1027_H.txt model_1478_H.txt model_1928_H.txt model_581_H.txt
model_1028_H.txt model_1479_H.txt model_1929_H.txt model_582_H.txt
model_1029_H.txt model_147_H.txt model_192_H.txt model_583_H.txt
model_102_H.txt model_1480_H.txt model_1930_H.txt model_584_H.txt
model_1030_H.txt model_1481_H.txt model_1931_H.txt model_585_H.txt
model_1031_H.txt model_1482_H.txt model_1932_H.txt model_586_H.txt
model_1032_H.txt model_1483_H.txt model_1933_H.txt model_587_H.txt
model_1033_H.txt model_1484_H.txt model_1934_H.txt model_588_H.txt
model_1034_H.txt model_1485_H.txt model_1935_H.txt model_589_H.txt
model_1035_H.txt model_1486_H.txt model_1936_H.txt model_58_H.txt
model_1036_H.txt model_1487_H.txt model_1937_H.txt model_590_H.txt
model_1037_H.txt model_1488_H.txt model_1938_H.txt model_591_H.txt
model_1038_H.txt model_1489_H.txt model_1939_H.txt model_592_H.txt
model_1039_H.txt model_148_H.txt model_193_H.txt model_593_H.txt
model_103_H.txt model_1490_H.txt model_1940_H.txt model_594_H.txt
model_1040_H.txt model_1491_H.txt model_1941_H.txt model_595_H.txt
model_1041_H.txt model_1492_H.txt model_1942_H.txt model_596_H.txt
model_1042_H.txt model_1493_H.txt model_1943_H.txt model_597_H.txt
model_1043_H.txt model_1494_H.txt model_1944_H.txt model_598_H.txt
model_1044_H.txt model_1495_H.txt model_1945_H.txt model_599_H.txt
model_1045_H.txt model_1496_H.txt model_1946_H.txt model_59_H.txt
model_1046_H.txt model_1497_H.txt model_1947_H.txt model_5_H.txt
model_1047_H.txt model_1498_H.txt model_1948_H.txt model_600_H.txt
model_1048_H.txt model_1499_H.txt model_1949_H.txt model_601_H.txt
model_1049_H.txt model_149_H.txt model_194_H.txt model_602_H.txt
model_104_H.txt model_14_H.txt model_1950_H.txt model_603_H.txt
model_1050_H.txt model_1500_H.txt model_1951_H.txt model_604_H.txt
model_1051_H.txt model_1501_H.txt model_1952_H.txt model_605_H.txt
model_1052_H.txt model_1502_H.txt model_1953_H.txt model_606_H.txt
model_1053_H.txt model_1503_H.txt model_1954_H.txt model_607_H.txt
model_1054_H.txt model_1504_H.txt model_1955_H.txt model_608_H.txt
model_1055_H.txt model_1505_H.txt model_1956_H.txt model_609_H.txt
model_1056_H.txt model_1506_H.txt model_1957_H.txt model_60_H.txt
model_1057_H.txt model_1507_H.txt model_1958_H.txt model_610_H.txt
model_1058_H.txt model_1508_H.txt model_1959_H.txt model_611_H.txt
model_1059_H.txt model_1509_H.txt model_195_H.txt model_612_H.txt
model_105_H.txt model_150_H.txt model_1960_H.txt model_613_H.txt
model_1060_H.txt model_1510_H.txt model_1961_H.txt model_614_H.txt
model_1061_H.txt model_1511_H.txt model_1962_H.txt model_615_H.txt
model_1062_H.txt model_1512_H.txt model_1963_H.txt model_616_H.txt
model_1063_H.txt model_1513_H.txt model_1964_H.txt model_617_H.txt
model_1064_H.txt model_1514_H.txt model_1965_H.txt model_618_H.txt
model_1065_H.txt model_1515_H.txt model_1966_H.txt model_619_H.txt
model_1066_H.txt model_1516_H.txt model_1967_H.txt model_61_H.txt
model_1067_H.txt model_1517_H.txt model_1968_H.txt model_620_H.txt
model_1068_H.txt model_1518_H.txt model_1969_H.txt model_621_H.txt
model_1069_H.txt model_1519_H.txt model_196_H.txt model_622_H.txt
model_106_H.txt model_151_H.txt model_1970_H.txt model_623_H.txt
model_1070_H.txt model_1520_H.txt model_1971_H.txt model_624_H.txt
model_1071_H.txt model_1521_H.txt model_1972_H.txt model_625_H.txt
model_1072_H.txt model_1522_H.txt model_1973_H.txt model_626_H.txt
model_1073_H.txt model_1523_H.txt model_1974_H.txt model_627_H.txt
model_1074_H.txt model_1524_H.txt model_1975_H.txt model_628_H.txt
model_1075_H.txt model_1525_H.txt model_1976_H.txt model_629_H.txt
model_1076_H.txt model_1526_H.txt model_1977_H.txt model_62_H.txt
model_1077_H.txt model_1527_H.txt model_1978_H.txt model_630_H.txt
model_1078_H.txt model_1528_H.txt model_1979_H.txt model_631_H.txt
model_1079_H.txt model_1529_H.txt model_197_H.txt model_632_H.txt
model_107_H.txt model_152_H.txt model_1980_H.txt model_633_H.txt
model_1080_H.txt model_1530_H.txt model_1981_H.txt model_634_H.txt
model_1081_H.txt model_1531_H.txt model_1982_H.txt model_635_H.txt
model_1082_H.txt model_1532_H.txt model_1983_H.txt model_636_H.txt
model_1083_H.txt model_1533_H.txt model_1984_H.txt model_637_H.txt
model_1084_H.txt model_1534_H.txt model_1985_H.txt model_638_H.txt
model_1085_H.txt model_1535_H.txt model_1986_H.txt model_639_H.txt
model_1086_H.txt model_1536_H.txt model_1987_H.txt model_63_H.txt
model_1087_H.txt model_1537_H.txt model_1988_H.txt model_640_H.txt
model_1088_H.txt model_1538_H.txt model_1989_H.txt model_641_H.txt
model_1089_H.txt model_1539_H.txt model_198_H.txt model_642_H.txt
model_108_H.txt model_153_H.txt model_1990_H.txt model_643_H.txt
model_1090_H.txt model_1540_H.txt model_1991_H.txt model_644_H.txt
model_1091_H.txt model_1541_H.txt model_1992_H.txt model_645_H.txt
model_1092_H.txt model_1542_H.txt model_1993_H.txt model_646_H.txt
model_1093_H.txt model_1543_H.txt model_1994_H.txt model_647_H.txt
model_1094_H.txt model_1544_H.txt model_1995_H.txt model_648_H.txt
model_1095_H.txt model_1545_H.txt model_1996_H.txt model_649_H.txt
model_1096_H.txt model_1546_H.txt model_1997_H.txt model_64_H.txt
model_1097_H.txt model_1547_H.txt model_1998_H.txt model_650_H.txt
model_1098_H.txt model_1548_H.txt model_1999_H.txt model_651_H.txt
model_1099_H.txt model_1549_H.txt model_199_H.txt model_652_H.txt
model_109_H.txt model_154_H.txt model_19_H.txt model_653_H.txt
model_10_H.txt model_1550_H.txt model_200_H.txt model_654_H.txt
model_1100_H.txt model_1551_H.txt model_201_H.txt model_655_H.txt
model_1101_H.txt model_1552_H.txt model_202_H.txt model_656_H.txt
model_1102_H.txt model_1553_H.txt model_203_H.txt model_657_H.txt
model_1103_H.txt model_1554_H.txt model_204_H.txt model_658_H.txt
model_1104_H.txt model_1555_H.txt model_205_H.txt model_659_H.txt
model_1105_H.txt model_1556_H.txt model_206_H.txt model_65_H.txt
model_1106_H.txt model_1557_H.txt model_207_H.txt model_660_H.txt
model_1107_H.txt model_1558_H.txt model_208_H.txt model_661_H.txt
model_1108_H.txt model_1559_H.txt model_209_H.txt model_662_H.txt
model_1109_H.txt model_155_H.txt model_20_H.txt model_663_H.txt
model_110_H.txt model_1560_H.txt model_210_H.txt model_664_H.txt
model_1110_H.txt model_1561_H.txt model_211_H.txt model_665_H.txt
model_1111_H.txt model_1562_H.txt model_212_H.txt model_666_H.txt
model_1112_H.txt model_1563_H.txt model_213_H.txt model_667_H.txt
model_1113_H.txt model_1564_H.txt model_214_H.txt model_668_H.txt
model_1114_H.txt model_1565_H.txt model_215_H.txt model_669_H.txt
model_1115_H.txt model_1566_H.txt model_216_H.txt model_66_H.txt
model_1116_H.txt model_1567_H.txt model_217_H.txt model_670_H.txt
model_1117_H.txt model_1568_H.txt model_218_H.txt model_671_H.txt
model_1118_H.txt model_1569_H.txt model_219_H.txt model_672_H.txt
model_1119_H.txt model_156_H.txt model_21_H.txt model_673_H.txt
model_111_H.txt model_1570_H.txt model_220_H.txt model_674_H.txt
model_1120_H.txt model_1571_H.txt model_221_H.txt model_675_H.txt
model_1121_H.txt model_1572_H.txt model_222_H.txt model_676_H.txt
model_1122_H.txt model_1573_H.txt model_223_H.txt model_677_H.txt
model_1123_H.txt model_1574_H.txt model_224_H.txt model_678_H.txt
model_1124_H.txt model_1575_H.txt model_225_H.txt model_679_H.txt
model_1125_H.txt model_1576_H.txt model_226_H.txt model_67_H.txt
model_1126_H.txt model_1577_H.txt model_227_H.txt model_680_H.txt
model_1127_H.txt model_1578_H.txt model_228_H.txt model_681_H.txt
model_1128_H.txt model_1579_H.txt model_229_H.txt model_682_H.txt
model_1129_H.txt model_157_H.txt model_22_H.txt model_683_H.txt
model_112_H.txt model_1580_H.txt model_230_H.txt model_684_H.txt
model_1130_H.txt model_1581_H.txt model_231_H.txt model_685_H.txt
model_1131_H.txt model_1582_H.txt model_232_H.txt model_686_H.txt
model_1132_H.txt model_1583_H.txt model_233_H.txt model_687_H.txt
model_1133_H.txt model_1584_H.txt model_234_H.txt model_688_H.txt
model_1134_H.txt model_1585_H.txt model_235_H.txt model_689_H.txt
model_1135_H.txt model_1586_H.txt model_236_H.txt model_68_H.txt
model_1136_H.txt model_1587_H.txt model_237_H.txt model_690_H.txt
model_1137_H.txt model_1588_H.txt model_238_H.txt model_691_H.txt
model_1138_H.txt model_1589_H.txt model_239_H.txt model_692_H.txt
model_1139_H.txt model_158_H.txt model_23_H.txt model_693_H.txt
model_113_H.txt model_1590_H.txt model_240_H.txt model_694_H.txt
model_1140_H.txt model_1591_H.txt model_241_H.txt model_695_H.txt
model_1141_H.txt model_1592_H.txt model_242_H.txt model_696_H.txt
model_1142_H.txt model_1593_H.txt model_243_H.txt model_697_H.txt
model_1143_H.txt model_1594_H.txt model_244_H.txt model_698_H.txt
model_1144_H.txt model_1595_H.txt model_245_H.txt model_699_H.txt
model_1145_H.txt model_1596_H.txt model_246_H.txt model_69_H.txt
model_1146_H.txt model_1597_H.txt model_247_H.txt model_6_H.txt
model_1147_H.txt model_1598_H.txt model_248_H.txt model_700_H.txt
model_1148_H.txt model_1599_H.txt model_249_H.txt model_701_H.txt
model_1149_H.txt model_159_H.txt model_24_H.txt model_702_H.txt
model_114_H.txt model_15_H.txt model_250_H.txt model_703_H.txt
model_1150_H.txt model_1600_H.txt model_251_H.txt model_704_H.txt
model_1151_H.txt model_1601_H.txt model_252_H.txt model_705_H.txt
model_1152_H.txt model_1602_H.txt model_253_H.txt model_706_H.txt
model_1153_H.txt model_1603_H.txt model_254_H.txt model_707_H.txt
model_1154_H.txt model_1604_H.txt model_255_H.txt model_708_H.txt
model_1155_H.txt model_1605_H.txt model_256_H.txt model_709_H.txt
model_1156_H.txt model_1606_H.txt model_257_H.txt model_70_H.txt
model_1157_H.txt model_1607_H.txt model_258_H.txt model_710_H.txt
model_1158_H.txt model_1608_H.txt model_259_H.txt model_711_H.txt
model_1159_H.txt model_1609_H.txt model_25_H.txt model_712_H.txt
model_115_H.txt model_160_H.txt model_260_H.txt model_713_H.txt
model_1160_H.txt model_1610_H.txt model_261_H.txt model_714_H.txt
model_1161_H.txt model_1611_H.txt model_262_H.txt model_715_H.txt
model_1162_H.txt model_1612_H.txt model_263_H.txt model_716_H.txt
model_1163_H.txt model_1613_H.txt model_264_H.txt model_717_H.txt
model_1164_H.txt model_1614_H.txt model_265_H.txt model_718_H.txt
model_1165_H.txt model_1615_H.txt model_266_H.txt model_719_H.txt
model_1166_H.txt model_1616_H.txt model_267_H.txt model_71_H.txt
model_1167_H.txt model_1617_H.txt model_268_H.txt model_720_H.txt
model_1168_H.txt model_1618_H.txt model_269_H.txt model_721_H.txt
model_1169_H.txt model_1619_H.txt model_26_H.txt model_722_H.txt
model_116_H.txt model_161_H.txt model_270_H.txt model_723_H.txt
model_1170_H.txt model_1620_H.txt model_271_H.txt model_724_H.txt
model_1171_H.txt model_1621_H.txt model_272_H.txt model_725_H.txt
model_1172_H.txt model_1622_H.txt model_273_H.txt model_726_H.txt
model_1173_H.txt model_1623_H.txt model_274_H.txt model_727_H.txt
model_1174_H.txt model_1624_H.txt model_275_H.txt model_728_H.txt
model_1175_H.txt model_1625_H.txt model_276_H.txt model_729_H.txt
model_1176_H.txt model_1626_H.txt model_277_H.txt model_72_H.txt
model_1177_H.txt model_1627_H.txt model_278_H.txt model_730_H.txt
model_1178_H.txt model_1628_H.txt model_279_H.txt model_731_H.txt
model_1179_H.txt model_1629_H.txt model_27_H.txt model_732_H.txt
model_117_H.txt model_162_H.txt model_280_H.txt model_733_H.txt
model_1180_H.txt model_1630_H.txt model_281_H.txt model_734_H.txt
model_1181_H.txt model_1631_H.txt model_282_H.txt model_735_H.txt
model_1182_H.txt model_1632_H.txt model_283_H.txt model_736_H.txt
model_1183_H.txt model_1633_H.txt model_284_H.txt model_737_H.txt
model_1184_H.txt model_1634_H.txt model_285_H.txt model_738_H.txt
model_1185_H.txt model_1635_H.txt model_286_H.txt model_739_H.txt
model_1186_H.txt model_1636_H.txt model_287_H.txt model_73_H.txt
model_1187_H.txt model_1637_H.txt model_288_H.txt model_740_H.txt
model_1188_H.txt model_1638_H.txt model_289_H.txt model_741_H.txt
model_1189_H.txt model_1639_H.txt model_28_H.txt model_742_H.txt
model_118_H.txt model_163_H.txt model_290_H.txt model_743_H.txt
model_1190_H.txt model_1640_H.txt model_291_H.txt model_744_H.txt
model_1191_H.txt model_1641_H.txt model_292_H.txt model_745_H.txt
model_1192_H.txt model_1642_H.txt model_293_H.txt model_746_H.txt
model_1193_H.txt model_1643_H.txt model_294_H.txt model_747_H.txt
model_1194_H.txt model_1644_H.txt model_295_H.txt model_748_H.txt
model_1195_H.txt model_1645_H.txt model_296_H.txt model_749_H.txt
model_1196_H.txt model_1646_H.txt model_297_H.txt model_74_H.txt
model_1197_H.txt model_1647_H.txt model_298_H.txt model_750_H.txt
model_1198_H.txt model_1648_H.txt model_299_H.txt model_751_H.txt
model_1199_H.txt model_1649_H.txt model_29_H.txt model_752_H.txt
model_119_H.txt model_164_H.txt model_300_H.txt model_753_H.txt
model_11_H.txt model_1650_H.txt model_301_H.txt model_754_H.txt
model_1200_H.txt model_1651_H.txt model_302_H.txt model_755_H.txt
model_1201_H.txt model_1652_H.txt model_303_H.txt model_756_H.txt
model_1202_H.txt model_1653_H.txt model_304_H.txt model_757_H.txt
model_1203_H.txt model_1654_H.txt model_305_H.txt model_758_H.txt
model_1204_H.txt model_1655_H.txt model_306_H.txt model_759_H.txt
model_1205_H.txt model_1656_H.txt model_307_H.txt model_75_H.txt
model_1206_H.txt model_1657_H.txt model_308_H.txt model_760_H.txt
model_1207_H.txt model_1658_H.txt model_309_H.txt model_761_H.txt
model_1208_H.txt model_1659_H.txt model_30_H.txt model_762_H.txt
model_1209_H.txt model_165_H.txt model_310_H.txt model_763_H.txt
model_120_H.txt model_1660_H.txt model_311_H.txt model_764_H.txt
model_1210_H.txt model_1661_H.txt model_312_H.txt model_765_H.txt
model_1211_H.txt model_1662_H.txt model_313_H.txt model_766_H.txt
model_1212_H.txt model_1663_H.txt model_314_H.txt model_767_H.txt
model_1213_H.txt model_1664_H.txt model_315_H.txt model_768_H.txt
model_1214_H.txt model_1665_H.txt model_316_H.txt model_769_H.txt
model_1215_H.txt model_1666_H.txt model_317_H.txt model_76_H.txt
model_1216_H.txt model_1667_H.txt model_318_H.txt model_770_H.txt
model_1217_H.txt model_1668_H.txt model_319_H.txt model_771_H.txt
model_1218_H.txt model_1669_H.txt model_31_H.txt model_772_H.txt
model_1219_H.txt model_166_H.txt model_320_H.txt model_773_H.txt
model_121_H.txt model_1670_H.txt model_321_H.txt model_774_H.txt
model_1220_H.txt model_1671_H.txt model_322_H.txt model_775_H.txt
model_1221_H.txt model_1672_H.txt model_323_H.txt model_776_H.txt
model_1222_H.txt model_1673_H.txt model_324_H.txt model_777_H.txt
model_1223_H.txt model_1674_H.txt model_325_H.txt model_778_H.txt
model_1224_H.txt model_1675_H.txt model_326_H.txt model_779_H.txt
model_1225_H.txt model_1676_H.txt model_327_H.txt model_77_H.txt
model_1226_H.txt model_1677_H.txt model_328_H.txt model_780_H.txt
model_1227_H.txt model_1678_H.txt model_329_H.txt model_781_H.txt
model_1228_H.txt model_1679_H.txt model_32_H.txt model_782_H.txt
model_1229_H.txt model_167_H.txt model_330_H.txt model_783_H.txt
model_122_H.txt model_1680_H.txt model_331_H.txt model_784_H.txt
model_1230_H.txt model_1681_H.txt model_332_H.txt model_785_H.txt
model_1231_H.txt model_1682_H.txt model_333_H.txt model_786_H.txt
model_1232_H.txt model_1683_H.txt model_334_H.txt model_787_H.txt
model_1233_H.txt model_1684_H.txt model_335_H.txt model_788_H.txt
model_1234_H.txt model_1685_H.txt model_336_H.txt model_789_H.txt
model_1235_H.txt model_1686_H.txt model_337_H.txt model_78_H.txt
model_1236_H.txt model_1687_H.txt model_338_H.txt model_790_H.txt
model_1237_H.txt model_1688_H.txt model_339_H.txt model_791_H.txt
model_1238_H.txt model_1689_H.txt model_33_H.txt model_792_H.txt
model_1239_H.txt model_168_H.txt model_340_H.txt model_793_H.txt
model_123_H.txt model_1690_H.txt model_341_H.txt model_794_H.txt
model_1240_H.txt model_1691_H.txt model_342_H.txt model_795_H.txt
model_1241_H.txt model_1692_H.txt model_343_H.txt model_796_H.txt
model_1242_H.txt model_1693_H.txt model_344_H.txt model_797_H.txt
model_1243_H.txt model_1694_H.txt model_345_H.txt model_798_H.txt
model_1244_H.txt model_1695_H.txt model_346_H.txt model_799_H.txt
model_1245_H.txt model_1696_H.txt model_347_H.txt model_79_H.txt
model_1246_H.txt model_1697_H.txt model_348_H.txt model_7_H.txt
model_1247_H.txt model_1698_H.txt model_349_H.txt model_800_H.txt
model_1248_H.txt model_1699_H.txt model_34_H.txt model_801_H.txt
model_1249_H.txt model_169_H.txt model_350_H.txt model_802_H.txt
model_124_H.txt model_16_H.txt model_351_H.txt model_803_H.txt
model_1250_H.txt model_1700_H.txt model_352_H.txt model_804_H.txt
model_1251_H.txt model_1701_H.txt model_353_H.txt model_805_H.txt
model_1252_H.txt model_1702_H.txt model_354_H.txt model_806_H.txt
model_1253_H.txt model_1703_H.txt model_355_H.txt model_807_H.txt
model_1254_H.txt model_1704_H.txt model_356_H.txt model_808_H.txt
model_1255_H.txt model_1705_H.txt model_357_H.txt model_809_H.txt
model_1256_H.txt model_1706_H.txt model_358_H.txt model_80_H.txt
model_1257_H.txt model_1707_H.txt model_359_H.txt model_810_H.txt
model_1258_H.txt model_1708_H.txt model_35_H.txt model_811_H.txt
model_1259_H.txt model_1709_H.txt model_360_H.txt model_812_H.txt
model_125_H.txt model_170_H.txt model_361_H.txt model_813_H.txt
model_1260_H.txt model_1710_H.txt model_362_H.txt model_814_H.txt
model_1261_H.txt model_1711_H.txt model_363_H.txt model_815_H.txt
model_1262_H.txt model_1712_H.txt model_364_H.txt model_816_H.txt
model_1263_H.txt model_1713_H.txt model_365_H.txt model_817_H.txt
model_1264_H.txt model_1714_H.txt model_366_H.txt model_818_H.txt
model_1265_H.txt model_1715_H.txt model_367_H.txt model_819_H.txt
model_1266_H.txt model_1716_H.txt model_368_H.txt model_81_H.txt
model_1267_H.txt model_1717_H.txt model_369_H.txt model_820_H.txt
model_1268_H.txt model_1718_H.txt model_36_H.txt model_821_H.txt
model_1269_H.txt model_1719_H.txt model_370_H.txt model_822_H.txt
model_126_H.txt model_171_H.txt model_371_H.txt model_823_H.txt
model_1270_H.txt model_1720_H.txt model_372_H.txt model_824_H.txt
model_1271_H.txt model_1721_H.txt model_373_H.txt model_825_H.txt
model_1272_H.txt model_1722_H.txt model_374_H.txt model_826_H.txt
model_1273_H.txt model_1723_H.txt model_375_H.txt model_827_H.txt
model_1274_H.txt model_1724_H.txt model_376_H.txt model_828_H.txt
model_1275_H.txt model_1725_H.txt model_377_H.txt model_829_H.txt
model_1276_H.txt model_1726_H.txt model_378_H.txt model_82_H.txt
model_1277_H.txt model_1727_H.txt model_379_H.txt model_830_H.txt
model_1278_H.txt model_1728_H.txt model_37_H.txt model_831_H.txt
model_1279_H.txt model_1729_H.txt model_380_H.txt model_832_H.txt
model_127_H.txt model_172_H.txt model_381_H.txt model_833_H.txt
model_1280_H.txt model_1730_H.txt model_382_H.txt model_834_H.txt
model_1281_H.txt model_1731_H.txt model_383_H.txt model_835_H.txt
model_1282_H.txt model_1732_H.txt model_384_H.txt model_836_H.txt
model_1283_H.txt model_1733_H.txt model_385_H.txt model_837_H.txt
model_1284_H.txt model_1734_H.txt model_386_H.txt model_838_H.txt
model_1285_H.txt model_1735_H.txt model_387_H.txt model_839_H.txt
model_1286_H.txt model_1736_H.txt model_388_H.txt model_83_H.txt
model_1287_H.txt model_1737_H.txt model_389_H.txt model_840_H.txt
model_1288_H.txt model_1738_H.txt model_38_H.txt model_841_H.txt
model_1289_H.txt model_1739_H.txt model_390_H.txt model_842_H.txt
model_128_H.txt model_173_H.txt model_391_H.txt model_843_H.txt
model_1290_H.txt model_1740_H.txt model_392_H.txt model_844_H.txt
model_1291_H.txt model_1741_H.txt model_393_H.txt model_845_H.txt
model_1292_H.txt model_1742_H.txt model_394_H.txt model_846_H.txt
model_1293_H.txt model_1743_H.txt model_395_H.txt model_847_H.txt
model_1294_H.txt model_1744_H.txt model_396_H.txt model_848_H.txt
model_1295_H.txt model_1745_H.txt model_397_H.txt model_849_H.txt
model_1296_H.txt model_1746_H.txt model_398_H.txt model_84_H.txt
model_1297_H.txt model_1747_H.txt model_399_H.txt model_850_H.txt
model_1298_H.txt model_1748_H.txt model_39_H.txt model_851_H.txt
model_1299_H.txt model_1749_H.txt model_400_H.txt model_852_H.txt
model_129_H.txt model_174_H.txt model_401_H.txt model_853_H.txt
model_12_H.txt model_1750_H.txt model_402_H.txt model_854_H.txt
model_1300_H.txt model_1751_H.txt model_403_H.txt model_855_H.txt
model_1301_H.txt model_1752_H.txt model_404_H.txt model_856_H.txt
model_1302_H.txt model_1753_H.txt model_405_H.txt model_857_H.txt
model_1303_H.txt model_1754_H.txt model_406_H.txt model_858_H.txt
model_1304_H.txt model_1755_H.txt model_407_H.txt model_859_H.txt
model_1305_H.txt model_1756_H.txt model_408_H.txt model_85_H.txt
model_1306_H.txt model_1757_H.txt model_409_H.txt model_860_H.txt
model_1307_H.txt model_1758_H.txt model_40_H.txt model_861_H.txt
model_1308_H.txt model_1759_H.txt model_410_H.txt model_862_H.txt
model_1309_H.txt model_175_H.txt model_411_H.txt model_863_H.txt
model_130_H.txt model_1760_H.txt model_412_H.txt model_864_H.txt
model_1310_H.txt model_1761_H.txt model_413_H.txt model_865_H.txt
model_1311_H.txt model_1762_H.txt model_414_H.txt model_866_H.txt
model_1312_H.txt model_1763_H.txt model_415_H.txt model_867_H.txt
model_1313_H.txt model_1764_H.txt model_416_H.txt model_868_H.txt
model_1314_H.txt model_1765_H.txt model_417_H.txt model_869_H.txt
model_1315_H.txt model_1766_H.txt model_418_H.txt model_86_H.txt
model_1316_H.txt model_1767_H.txt model_419_H.txt model_870_H.txt
model_1317_H.txt model_1768_H.txt model_41_H.txt model_871_H.txt
model_1318_H.txt model_1769_H.txt model_420_H.txt model_872_H.txt
model_1319_H.txt model_176_H.txt model_421_H.txt model_873_H.txt
model_131_H.txt model_1770_H.txt model_422_H.txt model_874_H.txt
model_1320_H.txt model_1771_H.txt model_423_H.txt model_875_H.txt
model_1321_H.txt model_1772_H.txt model_424_H.txt model_876_H.txt
model_1322_H.txt model_1773_H.txt model_425_H.txt model_877_H.txt
model_1323_H.txt model_1774_H.txt model_426_H.txt model_878_H.txt
model_1324_H.txt model_1775_H.txt model_427_H.txt model_879_H.txt
model_1325_H.txt model_1776_H.txt model_428_H.txt model_87_H.txt
model_1326_H.txt model_1777_H.txt model_429_H.txt model_880_H.txt
model_1327_H.txt model_1778_H.txt model_42_H.txt model_881_H.txt
model_1328_H.txt model_1779_H.txt model_430_H.txt model_882_H.txt
model_1329_H.txt model_177_H.txt model_431_H.txt model_883_H.txt
model_132_H.txt model_1780_H.txt model_432_H.txt model_884_H.txt
model_1330_H.txt model_1781_H.txt model_433_H.txt model_885_H.txt
model_1331_H.txt model_1782_H.txt model_434_H.txt model_886_H.txt
model_1332_H.txt model_1783_H.txt model_435_H.txt model_887_H.txt
model_1333_H.txt model_1784_H.txt model_436_H.txt model_888_H.txt
model_1334_H.txt model_1785_H.txt model_437_H.txt model_889_H.txt
model_1335_H.txt model_1786_H.txt model_438_H.txt model_88_H.txt
model_1336_H.txt model_1787_H.txt model_439_H.txt model_890_H.txt
model_1337_H.txt model_1788_H.txt model_43_H.txt model_891_H.txt
model_1338_H.txt model_1789_H.txt model_440_H.txt model_892_H.txt
model_1339_H.txt model_178_H.txt model_441_H.txt model_893_H.txt
model_133_H.txt model_1790_H.txt model_442_H.txt model_894_H.txt
model_1340_H.txt model_1791_H.txt model_443_H.txt model_895_H.txt
model_1341_H.txt model_1792_H.txt model_444_H.txt model_896_H.txt
model_1342_H.txt model_1793_H.txt model_445_H.txt model_897_H.txt
model_1343_H.txt model_1794_H.txt model_446_H.txt model_898_H.txt
model_1344_H.txt model_1795_H.txt model_447_H.txt model_899_H.txt
model_1345_H.txt model_1796_H.txt model_448_H.txt model_89_H.txt
model_1346_H.txt model_1797_H.txt model_449_H.txt model_8_H.txt
model_1347_H.txt model_1798_H.txt model_44_H.txt model_900_H.txt
model_1348_H.txt model_1799_H.txt model_450_H.txt model_901_H.txt
model_1349_H.txt model_179_H.txt model_451_H.txt model_902_H.txt
model_134_H.txt model_17_H.txt model_452_H.txt model_903_H.txt
model_1350_H.txt model_1800_H.txt model_453_H.txt model_904_H.txt
model_1351_H.txt model_1801_H.txt model_454_H.txt model_905_H.txt
model_1352_H.txt model_1802_H.txt model_455_H.txt model_906_H.txt
model_1353_H.txt model_1803_H.txt model_456_H.txt model_907_H.txt
model_1354_H.txt model_1804_H.txt model_457_H.txt model_908_H.txt
model_1355_H.txt model_1805_H.txt model_458_H.txt model_909_H.txt
model_1356_H.txt model_1806_H.txt model_459_H.txt model_90_H.txt
model_1357_H.txt model_1807_H.txt model_45_H.txt model_910_H.txt
model_1358_H.txt model_1808_H.txt model_460_H.txt model_911_H.txt
model_1359_H.txt model_1809_H.txt model_461_H.txt model_912_H.txt
model_135_H.txt model_180_H.txt model_462_H.txt model_913_H.txt
model_1360_H.txt model_1810_H.txt model_463_H.txt model_914_H.txt
model_1361_H.txt model_1811_H.txt model_464_H.txt model_915_H.txt
model_1362_H.txt model_1812_H.txt model_465_H.txt model_916_H.txt
model_1363_H.txt model_1813_H.txt model_466_H.txt model_917_H.txt
model_1364_H.txt model_1814_H.txt model_467_H.txt model_918_H.txt
model_1365_H.txt model_1815_H.txt model_468_H.txt model_919_H.txt
model_1366_H.txt model_1816_H.txt model_469_H.txt model_91_H.txt
model_1367_H.txt model_1817_H.txt model_46_H.txt model_920_H.txt
model_1368_H.txt model_1818_H.txt model_470_H.txt model_921_H.txt
model_1369_H.txt model_1819_H.txt model_471_H.txt model_922_H.txt
model_136_H.txt model_181_H.txt model_472_H.txt model_923_H.txt
model_1370_H.txt model_1820_H.txt model_473_H.txt model_924_H.txt
model_1371_H.txt model_1821_H.txt model_474_H.txt model_925_H.txt
model_1372_H.txt model_1822_H.txt model_475_H.txt model_926_H.txt
model_1373_H.txt model_1823_H.txt model_476_H.txt model_927_H.txt
model_1374_H.txt model_1824_H.txt model_477_H.txt model_928_H.txt
model_1375_H.txt model_1825_H.txt model_478_H.txt model_929_H.txt
model_1376_H.txt model_1826_H.txt model_479_H.txt model_92_H.txt
model_1377_H.txt model_1827_H.txt model_47_H.txt model_930_H.txt
model_1378_H.txt model_1828_H.txt model_480_H.txt model_931_H.txt
model_1379_H.txt model_1829_H.txt model_481_H.txt model_932_H.txt
model_137_H.txt model_182_H.txt model_482_H.txt model_933_H.txt
model_1380_H.txt model_1830_H.txt model_483_H.txt model_934_H.txt
model_1381_H.txt model_1831_H.txt model_484_H.txt model_935_H.txt
model_1382_H.txt model_1832_H.txt model_485_H.txt model_936_H.txt
model_1383_H.txt model_1833_H.txt model_486_H.txt model_937_H.txt
model_1384_H.txt model_1834_H.txt model_487_H.txt model_938_H.txt
model_1385_H.txt model_1835_H.txt model_488_H.txt model_939_H.txt
model_1386_H.txt model_1836_H.txt model_489_H.txt model_93_H.txt
model_1387_H.txt model_1837_H.txt model_48_H.txt model_940_H.txt
model_1388_H.txt model_1838_H.txt model_490_H.txt model_941_H.txt
model_1389_H.txt model_1839_H.txt model_491_H.txt model_942_H.txt
model_138_H.txt model_183_H.txt model_492_H.txt model_943_H.txt
model_1390_H.txt model_1840_H.txt model_493_H.txt model_944_H.txt
model_1391_H.txt model_1841_H.txt model_494_H.txt model_945_H.txt
model_1392_H.txt model_1842_H.txt model_495_H.txt model_946_H.txt
model_1393_H.txt model_1843_H.txt model_496_H.txt model_947_H.txt
model_1394_H.txt model_1844_H.txt model_497_H.txt model_948_H.txt
model_1395_H.txt model_1845_H.txt model_498_H.txt model_949_H.txt
model_1396_H.txt model_1846_H.txt model_499_H.txt model_94_H.txt
model_1397_H.txt model_1847_H.txt model_49_H.txt model_950_H.txt
model_1398_H.txt model_1848_H.txt model_500_H.txt model_951_H.txt
model_1399_H.txt model_1849_H.txt model_501_H.txt model_952_H.txt
model_139_H.txt model_184_H.txt model_502_H.txt model_953_H.txt
model_13_H.txt model_1850_H.txt model_503_H.txt model_954_H.txt
model_1400_H.txt model_1851_H.txt model_504_H.txt model_955_H.txt
model_1401_H.txt model_1852_H.txt model_505_H.txt model_956_H.txt
model_1402_H.txt model_1853_H.txt model_506_H.txt model_957_H.txt
model_1403_H.txt model_1854_H.txt model_507_H.txt model_958_H.txt
model_1404_H.txt model_1855_H.txt model_508_H.txt model_959_H.txt
model_1405_H.txt model_1856_H.txt model_509_H.txt model_95_H.txt
model_1406_H.txt model_1857_H.txt model_50_H.txt model_960_H.txt
model_1407_H.txt model_1858_H.txt model_510_H.txt model_961_H.txt
model_1408_H.txt model_1859_H.txt model_511_H.txt model_962_H.txt
model_1409_H.txt model_185_H.txt model_512_H.txt model_963_H.txt
model_140_H.txt model_1860_H.txt model_513_H.txt model_964_H.txt
model_1410_H.txt model_1861_H.txt model_514_H.txt model_965_H.txt
model_1411_H.txt model_1862_H.txt model_515_H.txt model_966_H.txt
model_1412_H.txt model_1863_H.txt model_516_H.txt model_967_H.txt
model_1413_H.txt model_1864_H.txt model_517_H.txt model_968_H.txt
model_1414_H.txt model_1865_H.txt model_518_H.txt model_969_H.txt
model_1415_H.txt model_1866_H.txt model_519_H.txt model_96_H.txt
model_1416_H.txt model_1867_H.txt model_51_H.txt model_970_H.txt
model_1417_H.txt model_1868_H.txt model_520_H.txt model_971_H.txt
model_1418_H.txt model_1869_H.txt model_521_H.txt model_972_H.txt
model_1419_H.txt model_186_H.txt model_522_H.txt model_973_H.txt
model_141_H.txt model_1870_H.txt model_523_H.txt model_974_H.txt
model_1420_H.txt model_1871_H.txt model_524_H.txt model_975_H.txt
model_1421_H.txt model_1872_H.txt model_525_H.txt model_976_H.txt
model_1422_H.txt model_1873_H.txt model_526_H.txt model_977_H.txt
model_1423_H.txt model_1874_H.txt model_527_H.txt model_978_H.txt
model_1424_H.txt model_1875_H.txt model_528_H.txt model_979_H.txt
model_1425_H.txt model_1876_H.txt model_529_H.txt model_97_H.txt
model_1426_H.txt model_1877_H.txt model_52_H.txt model_980_H.txt
model_1427_H.txt model_1878_H.txt model_530_H.txt model_981_H.txt
model_1428_H.txt model_1879_H.txt model_531_H.txt model_982_H.txt
model_1429_H.txt model_187_H.txt model_532_H.txt model_983_H.txt
model_142_H.txt model_1880_H.txt model_533_H.txt model_984_H.txt
model_1430_H.txt model_1881_H.txt model_534_H.txt model_985_H.txt
model_1431_H.txt model_1882_H.txt model_535_H.txt model_986_H.txt
model_1432_H.txt model_1883_H.txt model_536_H.txt model_987_H.txt
model_1433_H.txt model_1884_H.txt model_537_H.txt model_988_H.txt
model_1434_H.txt model_1885_H.txt model_538_H.txt model_989_H.txt
model_1435_H.txt model_1886_H.txt model_539_H.txt model_98_H.txt
model_1436_H.txt model_1887_H.txt model_53_H.txt model_990_H.txt
model_1437_H.txt model_1888_H.txt model_540_H.txt model_991_H.txt
model_1438_H.txt model_1889_H.txt model_541_H.txt model_992_H.txt
model_1439_H.txt model_188_H.txt model_542_H.txt model_993_H.txt
model_143_H.txt model_1890_H.txt model_543_H.txt model_994_H.txt
model_1440_H.txt model_1891_H.txt model_544_H.txt model_995_H.txt
model_1441_H.txt model_1892_H.txt model_545_H.txt model_996_H.txt
model_1442_H.txt model_1893_H.txt model_546_H.txt model_997_H.txt
model_1443_H.txt model_1894_H.txt model_547_H.txt model_998_H.txt
model_1444_H.txt model_1895_H.txt model_548_H.txt model_999_H.txt
model_1445_H.txt model_1896_H.txt model_549_H.txt model_99_H.txt
model_1446_H.txt model_1897_H.txt model_54_H.txt model_9_H.txt
model_1447_H.txt model_1898_H.txt model_550_H.txt radar_FM1D_refMethod.py*
model_1448_H.txt model_1899_H.txt model_551_H.txt runModels.sh
model_1449_H.txt model_189_H.txt model_552_H.txt
model_144_H.txt model_18_H.txt model_553_H.txt
model_1450_H.txt model_1900_H.txt model_554_H.txt
#Now running the shellscript to run each model.
!sh runModels.sh
Note: the script was running slowly so I stopped it early, but still got several thousand model datasets.
ls *.csv
model_1000_H_model.csv model_1393_H_model.csv model_1000_H_output_data.csv model_1393_H_output_data.csv model_1001_H_model.csv model_1394_H_model.csv model_1001_H_output_data.csv model_1394_H_output_data.csv model_1002_H_model.csv model_1395_H_model.csv model_1002_H_output_data.csv model_1395_H_output_data.csv model_1003_H_model.csv model_1396_H_model.csv model_1003_H_output_data.csv model_1396_H_output_data.csv model_1004_H_model.csv model_1397_H_model.csv model_1004_H_output_data.csv model_1397_H_output_data.csv model_1005_H_model.csv model_1398_H_model.csv model_1005_H_output_data.csv model_1398_H_output_data.csv model_1006_H_model.csv model_1399_H_model.csv model_1006_H_output_data.csv model_1399_H_output_data.csv model_1007_H_model.csv model_139_H_model.csv model_1007_H_output_data.csv model_139_H_output_data.csv model_1008_H_model.csv model_13_H_model.csv model_1008_H_output_data.csv model_13_H_output_data.csv model_1009_H_model.csv model_1400_H_model.csv model_1009_H_output_data.csv model_1400_H_output_data.csv model_100_H_model.csv model_1401_H_model.csv model_100_H_output_data.csv model_1401_H_output_data.csv model_1010_H_model.csv model_1402_H_model.csv model_1010_H_output_data.csv model_1402_H_output_data.csv model_1011_H_model.csv model_1403_H_model.csv model_1011_H_output_data.csv model_1403_H_output_data.csv model_1012_H_model.csv model_1404_H_model.csv model_1012_H_output_data.csv model_1404_H_output_data.csv model_1013_H_model.csv model_1405_H_model.csv model_1013_H_output_data.csv model_1405_H_output_data.csv model_1014_H_model.csv model_1406_H_model.csv model_1014_H_output_data.csv model_1406_H_output_data.csv model_1015_H_model.csv model_1407_H_model.csv model_1015_H_output_data.csv model_1407_H_output_data.csv model_1016_H_model.csv model_1408_H_model.csv model_1016_H_output_data.csv model_1408_H_output_data.csv model_1017_H_model.csv model_1409_H_model.csv model_1017_H_output_data.csv model_1409_H_output_data.csv model_1018_H_model.csv model_140_H_model.csv model_1018_H_output_data.csv model_140_H_output_data.csv model_1019_H_model.csv model_1410_H_model.csv model_1019_H_output_data.csv model_1410_H_output_data.csv model_101_H_model.csv model_1411_H_model.csv model_101_H_output_data.csv model_1411_H_output_data.csv model_1020_H_model.csv model_1412_H_model.csv model_1020_H_output_data.csv model_1412_H_output_data.csv model_1021_H_model.csv model_1413_H_model.csv model_1021_H_output_data.csv model_1413_H_output_data.csv model_1022_H_model.csv model_1414_H_model.csv model_1022_H_output_data.csv model_1414_H_output_data.csv model_1023_H_model.csv model_1415_H_model.csv model_1023_H_output_data.csv model_1415_H_output_data.csv model_1024_H_model.csv model_1416_H_model.csv model_1024_H_output_data.csv model_1416_H_output_data.csv model_1025_H_model.csv model_1417_H_model.csv model_1025_H_output_data.csv model_1417_H_output_data.csv model_1026_H_model.csv model_1418_H_model.csv model_1026_H_output_data.csv model_1418_H_output_data.csv model_1027_H_model.csv model_1419_H_model.csv model_1027_H_output_data.csv model_1419_H_output_data.csv model_1028_H_model.csv model_141_H_model.csv model_1028_H_output_data.csv model_141_H_output_data.csv model_1029_H_model.csv model_1420_H_model.csv model_1029_H_output_data.csv model_1420_H_output_data.csv model_102_H_model.csv model_1421_H_model.csv model_102_H_output_data.csv model_1421_H_output_data.csv model_1030_H_model.csv model_1422_H_model.csv model_1030_H_output_data.csv model_1422_H_output_data.csv model_1031_H_model.csv model_1423_H_model.csv model_1031_H_output_data.csv model_1423_H_output_data.csv model_1032_H_model.csv model_1424_H_model.csv model_1032_H_output_data.csv model_1424_H_output_data.csv model_1033_H_model.csv model_1425_H_model.csv model_1033_H_output_data.csv model_1425_H_output_data.csv model_1034_H_model.csv model_1426_H_model.csv model_1034_H_output_data.csv model_1426_H_output_data.csv model_1035_H_model.csv model_1427_H_model.csv model_1035_H_output_data.csv model_1427_H_output_data.csv model_1036_H_model.csv model_1428_H_model.csv model_1036_H_output_data.csv model_1428_H_output_data.csv model_1037_H_model.csv model_1429_H_model.csv model_1037_H_output_data.csv model_1429_H_output_data.csv model_1038_H_model.csv model_142_H_model.csv model_1038_H_output_data.csv model_142_H_output_data.csv model_1039_H_model.csv model_1430_H_model.csv model_1039_H_output_data.csv model_1430_H_output_data.csv model_103_H_model.csv model_1431_H_model.csv model_103_H_output_data.csv model_1431_H_output_data.csv model_1040_H_model.csv model_1432_H_model.csv model_1040_H_output_data.csv model_1432_H_output_data.csv model_1041_H_model.csv model_1433_H_model.csv model_1041_H_output_data.csv model_1433_H_output_data.csv model_1042_H_model.csv model_1434_H_model.csv model_1042_H_output_data.csv model_1434_H_output_data.csv model_1043_H_model.csv model_1435_H_model.csv model_1043_H_output_data.csv model_1435_H_output_data.csv model_1044_H_model.csv model_1436_H_model.csv model_1044_H_output_data.csv model_1436_H_output_data.csv model_1045_H_model.csv model_1437_H_model.csv model_1045_H_output_data.csv model_1437_H_output_data.csv model_1046_H_model.csv model_1438_H_model.csv model_1046_H_output_data.csv model_1438_H_output_data.csv model_1047_H_model.csv model_1439_H_model.csv model_1047_H_output_data.csv model_1439_H_output_data.csv model_1048_H_model.csv model_143_H_model.csv model_1048_H_output_data.csv model_143_H_output_data.csv model_1049_H_model.csv model_1440_H_model.csv model_1049_H_output_data.csv model_1440_H_output_data.csv model_104_H_model.csv model_1441_H_model.csv model_104_H_output_data.csv model_1441_H_output_data.csv model_1050_H_model.csv model_1442_H_model.csv model_1050_H_output_data.csv model_1442_H_output_data.csv model_1051_H_model.csv model_1443_H_model.csv model_1051_H_output_data.csv model_1443_H_output_data.csv model_1052_H_model.csv model_1444_H_model.csv model_1052_H_output_data.csv model_1444_H_output_data.csv model_1053_H_model.csv model_1445_H_model.csv model_1053_H_output_data.csv model_1445_H_output_data.csv model_1054_H_model.csv model_1446_H_model.csv model_1054_H_output_data.csv model_1446_H_output_data.csv model_1055_H_model.csv model_1447_H_model.csv model_1055_H_output_data.csv model_1447_H_output_data.csv model_1056_H_model.csv model_1448_H_model.csv model_1056_H_output_data.csv model_1448_H_output_data.csv model_1057_H_model.csv model_1449_H_model.csv model_1057_H_output_data.csv model_1449_H_output_data.csv model_1058_H_model.csv model_144_H_model.csv model_1058_H_output_data.csv model_144_H_output_data.csv model_1059_H_model.csv model_1450_H_model.csv model_1059_H_output_data.csv model_1450_H_output_data.csv model_105_H_model.csv model_1451_H_model.csv model_105_H_output_data.csv model_1451_H_output_data.csv model_1060_H_model.csv model_1452_H_model.csv model_1060_H_output_data.csv model_1452_H_output_data.csv model_1061_H_model.csv model_1453_H_model.csv model_1061_H_output_data.csv model_1453_H_output_data.csv model_1062_H_model.csv model_1454_H_model.csv model_1062_H_output_data.csv model_1454_H_output_data.csv model_1063_H_model.csv model_1455_H_model.csv model_1063_H_output_data.csv model_1455_H_output_data.csv model_1064_H_model.csv model_1456_H_model.csv model_1064_H_output_data.csv model_1456_H_output_data.csv model_1065_H_model.csv model_1457_H_model.csv model_1065_H_output_data.csv model_1457_H_output_data.csv model_1066_H_model.csv model_1458_H_model.csv model_1066_H_output_data.csv model_1458_H_output_data.csv model_1067_H_model.csv model_1459_H_model.csv model_1067_H_output_data.csv model_1459_H_output_data.csv model_1068_H_model.csv model_145_H_model.csv model_1068_H_output_data.csv model_145_H_output_data.csv model_1069_H_model.csv model_1460_H_model.csv model_1069_H_output_data.csv model_1460_H_output_data.csv model_106_H_model.csv model_1461_H_model.csv model_106_H_output_data.csv model_1461_H_output_data.csv model_1070_H_model.csv model_1462_H_model.csv model_1070_H_output_data.csv model_1462_H_output_data.csv model_1071_H_model.csv model_1463_H_model.csv model_1071_H_output_data.csv model_1463_H_output_data.csv model_1072_H_model.csv model_1464_H_model.csv model_1072_H_output_data.csv model_1464_H_output_data.csv model_1073_H_model.csv model_1465_H_model.csv model_1073_H_output_data.csv model_1465_H_output_data.csv model_1074_H_model.csv model_1466_H_model.csv model_1074_H_output_data.csv model_1466_H_output_data.csv model_1075_H_model.csv model_1467_H_model.csv model_1075_H_output_data.csv model_1467_H_output_data.csv model_1076_H_model.csv model_1468_H_model.csv model_1076_H_output_data.csv model_1468_H_output_data.csv model_1077_H_model.csv model_1469_H_model.csv model_1077_H_output_data.csv model_1469_H_output_data.csv model_1078_H_model.csv model_146_H_model.csv model_1078_H_output_data.csv model_146_H_output_data.csv model_1079_H_model.csv model_1470_H_model.csv model_1079_H_output_data.csv model_1470_H_output_data.csv model_107_H_model.csv model_1471_H_model.csv model_107_H_output_data.csv model_1471_H_output_data.csv model_1080_H_model.csv model_1472_H_model.csv model_1080_H_output_data.csv model_1472_H_output_data.csv model_1081_H_model.csv model_1473_H_model.csv model_1081_H_output_data.csv model_1473_H_output_data.csv model_1082_H_model.csv model_1474_H_model.csv model_1082_H_output_data.csv model_1474_H_output_data.csv model_1083_H_model.csv model_1475_H_model.csv model_1083_H_output_data.csv model_1475_H_output_data.csv model_1084_H_model.csv model_1476_H_model.csv model_1084_H_output_data.csv model_1476_H_output_data.csv model_1085_H_model.csv model_1477_H_model.csv model_1085_H_output_data.csv model_1477_H_output_data.csv model_1086_H_model.csv model_1478_H_model.csv model_1086_H_output_data.csv model_1478_H_output_data.csv model_1087_H_model.csv model_1479_H_model.csv model_1087_H_output_data.csv model_1479_H_output_data.csv model_1088_H_model.csv model_147_H_model.csv model_1088_H_output_data.csv model_147_H_output_data.csv model_1089_H_model.csv model_1480_H_model.csv model_1089_H_output_data.csv model_1480_H_output_data.csv model_108_H_model.csv model_1481_H_model.csv model_108_H_output_data.csv model_1481_H_output_data.csv model_1090_H_model.csv model_1482_H_model.csv model_1090_H_output_data.csv model_1482_H_output_data.csv model_1091_H_model.csv model_1483_H_model.csv model_1091_H_output_data.csv model_1483_H_output_data.csv model_1092_H_model.csv model_1484_H_model.csv model_1092_H_output_data.csv model_1484_H_output_data.csv model_1093_H_model.csv model_1485_H_model.csv model_1093_H_output_data.csv model_1485_H_output_data.csv model_1094_H_model.csv model_1486_H_model.csv model_1094_H_output_data.csv model_1486_H_output_data.csv model_1095_H_model.csv model_1487_H_model.csv model_1095_H_output_data.csv model_1487_H_output_data.csv model_1096_H_model.csv model_1488_H_model.csv model_1096_H_output_data.csv model_1488_H_output_data.csv model_1097_H_model.csv model_1489_H_model.csv model_1097_H_output_data.csv model_1489_H_output_data.csv model_1098_H_model.csv model_148_H_model.csv model_1098_H_output_data.csv model_148_H_output_data.csv model_1099_H_model.csv model_1490_H_model.csv model_1099_H_output_data.csv model_1490_H_output_data.csv model_109_H_model.csv model_1491_H_model.csv model_109_H_output_data.csv model_1491_H_output_data.csv model_10_H_model.csv model_1492_H_model.csv model_10_H_output_data.csv model_1492_H_output_data.csv model_1100_H_model.csv model_1493_H_model.csv model_1100_H_output_data.csv model_1493_H_output_data.csv model_1101_H_model.csv model_1494_H_model.csv model_1101_H_output_data.csv model_1494_H_output_data.csv model_1102_H_model.csv model_1495_H_model.csv model_1102_H_output_data.csv model_1495_H_output_data.csv model_1103_H_model.csv model_1496_H_model.csv model_1103_H_output_data.csv model_1496_H_output_data.csv model_1104_H_model.csv model_1497_H_model.csv model_1104_H_output_data.csv model_1497_H_output_data.csv model_1105_H_model.csv model_1498_H_model.csv model_1105_H_output_data.csv model_1498_H_output_data.csv model_1106_H_model.csv model_1499_H_model.csv model_1106_H_output_data.csv model_1499_H_output_data.csv model_1107_H_model.csv model_149_H_model.csv model_1107_H_output_data.csv model_149_H_output_data.csv model_1108_H_model.csv model_14_H_model.csv model_1108_H_output_data.csv model_14_H_output_data.csv model_1109_H_model.csv model_1500_H_model.csv model_1109_H_output_data.csv model_1500_H_output_data.csv model_110_H_model.csv model_1501_H_model.csv model_110_H_output_data.csv model_1501_H_output_data.csv model_1110_H_model.csv model_1502_H_model.csv model_1110_H_output_data.csv model_1502_H_output_data.csv model_1111_H_model.csv model_1503_H_model.csv model_1111_H_output_data.csv model_1503_H_output_data.csv model_1112_H_model.csv model_1504_H_model.csv model_1112_H_output_data.csv model_1504_H_output_data.csv model_1113_H_model.csv model_1505_H_model.csv model_1113_H_output_data.csv model_1505_H_output_data.csv model_1114_H_model.csv model_1506_H_model.csv model_1114_H_output_data.csv model_1506_H_output_data.csv model_1115_H_model.csv model_1507_H_model.csv model_1115_H_output_data.csv model_1507_H_output_data.csv model_1116_H_model.csv model_1508_H_model.csv model_1116_H_output_data.csv model_1508_H_output_data.csv model_1117_H_model.csv model_1509_H_model.csv model_1117_H_output_data.csv model_1509_H_output_data.csv model_1118_H_model.csv model_150_H_model.csv model_1118_H_output_data.csv model_150_H_output_data.csv model_1119_H_model.csv model_1510_H_model.csv model_1119_H_output_data.csv model_1510_H_output_data.csv model_111_H_model.csv model_1511_H_model.csv model_111_H_output_data.csv model_1511_H_output_data.csv model_1120_H_model.csv model_1512_H_model.csv model_1120_H_output_data.csv model_1512_H_output_data.csv model_1121_H_model.csv model_1513_H_model.csv model_1121_H_output_data.csv model_1513_H_output_data.csv model_1122_H_model.csv model_1514_H_model.csv model_1122_H_output_data.csv model_1514_H_output_data.csv model_1123_H_model.csv model_1515_H_model.csv model_1123_H_output_data.csv model_1515_H_output_data.csv model_1124_H_model.csv model_1516_H_model.csv model_1124_H_output_data.csv model_1516_H_output_data.csv model_1125_H_model.csv model_1517_H_model.csv model_1125_H_output_data.csv model_1517_H_output_data.csv model_1126_H_model.csv model_1518_H_model.csv model_1126_H_output_data.csv model_1518_H_output_data.csv model_1127_H_model.csv model_1519_H_model.csv model_1127_H_output_data.csv model_1519_H_output_data.csv model_1128_H_model.csv model_151_H_model.csv model_1128_H_output_data.csv model_151_H_output_data.csv model_1129_H_model.csv model_1520_H_model.csv model_1129_H_output_data.csv model_1520_H_output_data.csv model_112_H_model.csv model_1521_H_model.csv model_112_H_output_data.csv model_1521_H_output_data.csv model_1130_H_model.csv model_1522_H_model.csv model_1130_H_output_data.csv model_1522_H_output_data.csv model_1131_H_model.csv model_1523_H_model.csv model_1131_H_output_data.csv model_1523_H_output_data.csv model_1132_H_model.csv model_1524_H_model.csv model_1132_H_output_data.csv model_1524_H_output_data.csv model_1133_H_model.csv model_1525_H_model.csv model_1133_H_output_data.csv model_1525_H_output_data.csv model_1134_H_model.csv model_1526_H_model.csv model_1134_H_output_data.csv model_1526_H_output_data.csv model_1135_H_model.csv model_1527_H_model.csv model_1135_H_output_data.csv model_1527_H_output_data.csv model_1136_H_model.csv model_1528_H_model.csv model_1136_H_output_data.csv model_1528_H_output_data.csv model_1137_H_model.csv model_1529_H_model.csv model_1137_H_output_data.csv model_1529_H_output_data.csv model_1138_H_model.csv model_152_H_model.csv model_1138_H_output_data.csv model_152_H_output_data.csv model_1139_H_model.csv model_1530_H_model.csv model_1139_H_output_data.csv model_1530_H_output_data.csv model_113_H_model.csv model_1531_H_model.csv model_113_H_output_data.csv model_1531_H_output_data.csv model_1140_H_model.csv model_1532_H_model.csv model_1140_H_output_data.csv model_1532_H_output_data.csv model_1141_H_model.csv model_1533_H_model.csv model_1141_H_output_data.csv model_1533_H_output_data.csv model_1142_H_model.csv model_1534_H_model.csv model_1142_H_output_data.csv model_1534_H_output_data.csv model_1143_H_model.csv model_1535_H_model.csv model_1143_H_output_data.csv model_1535_H_output_data.csv model_1144_H_model.csv model_1536_H_model.csv model_1144_H_output_data.csv model_1536_H_output_data.csv model_1145_H_model.csv model_1537_H_model.csv model_1145_H_output_data.csv model_1537_H_output_data.csv model_1146_H_model.csv model_1538_H_model.csv model_1146_H_output_data.csv model_1538_H_output_data.csv model_1147_H_model.csv model_1539_H_model.csv model_1147_H_output_data.csv model_1539_H_output_data.csv model_1148_H_model.csv model_153_H_model.csv model_1148_H_output_data.csv model_153_H_output_data.csv model_1149_H_model.csv model_1540_H_model.csv model_1149_H_output_data.csv model_1540_H_output_data.csv model_114_H_model.csv model_1541_H_model.csv model_114_H_output_data.csv model_1541_H_output_data.csv model_1150_H_model.csv model_1542_H_model.csv model_1150_H_output_data.csv model_1542_H_output_data.csv model_1151_H_model.csv model_1543_H_model.csv model_1151_H_output_data.csv model_1543_H_output_data.csv model_1152_H_model.csv model_1544_H_model.csv model_1152_H_output_data.csv model_1544_H_output_data.csv model_1153_H_model.csv model_1545_H_model.csv model_1153_H_output_data.csv model_1545_H_output_data.csv model_1154_H_model.csv model_1546_H_model.csv model_1154_H_output_data.csv model_1546_H_output_data.csv model_1155_H_model.csv model_1547_H_model.csv model_1155_H_output_data.csv model_1547_H_output_data.csv model_1156_H_model.csv model_1548_H_model.csv model_1156_H_output_data.csv model_1548_H_output_data.csv model_1157_H_model.csv model_1549_H_model.csv model_1157_H_output_data.csv model_1549_H_output_data.csv model_1158_H_model.csv model_154_H_model.csv model_1158_H_output_data.csv model_154_H_output_data.csv model_1159_H_model.csv model_1550_H_model.csv model_1159_H_output_data.csv model_1550_H_output_data.csv model_115_H_model.csv model_1551_H_model.csv model_115_H_output_data.csv model_1551_H_output_data.csv model_1160_H_model.csv model_1552_H_model.csv model_1160_H_output_data.csv model_1552_H_output_data.csv model_1161_H_model.csv model_1553_H_model.csv model_1161_H_output_data.csv model_1553_H_output_data.csv model_1162_H_model.csv model_1554_H_model.csv model_1162_H_output_data.csv model_1554_H_output_data.csv model_1163_H_model.csv model_1555_H_model.csv model_1163_H_output_data.csv model_1555_H_output_data.csv model_1164_H_model.csv model_1556_H_model.csv model_1164_H_output_data.csv model_1556_H_output_data.csv model_1165_H_model.csv model_1557_H_model.csv model_1165_H_output_data.csv model_1557_H_output_data.csv model_1166_H_model.csv model_1558_H_model.csv model_1166_H_output_data.csv model_1558_H_output_data.csv model_1167_H_model.csv model_1559_H_model.csv model_1167_H_output_data.csv model_1559_H_output_data.csv model_1168_H_model.csv model_155_H_model.csv model_1168_H_output_data.csv model_155_H_output_data.csv model_1169_H_model.csv model_1560_H_model.csv model_1169_H_output_data.csv model_1560_H_output_data.csv model_116_H_model.csv model_1561_H_model.csv model_116_H_output_data.csv model_1561_H_output_data.csv model_1170_H_model.csv model_1562_H_model.csv model_1170_H_output_data.csv model_1562_H_output_data.csv model_1171_H_model.csv model_1563_H_model.csv model_1171_H_output_data.csv model_1563_H_output_data.csv model_1172_H_model.csv model_1564_H_model.csv model_1172_H_output_data.csv model_1564_H_output_data.csv model_1173_H_model.csv model_1565_H_model.csv model_1173_H_output_data.csv model_1565_H_output_data.csv model_1174_H_model.csv model_1566_H_model.csv model_1174_H_output_data.csv model_1566_H_output_data.csv model_1175_H_model.csv model_1567_H_model.csv model_1175_H_output_data.csv model_1567_H_output_data.csv model_1176_H_model.csv model_1568_H_model.csv model_1176_H_output_data.csv model_1568_H_output_data.csv model_1177_H_model.csv model_1569_H_model.csv model_1177_H_output_data.csv model_1569_H_output_data.csv model_1178_H_model.csv model_156_H_model.csv model_1178_H_output_data.csv model_156_H_output_data.csv model_1179_H_model.csv model_1570_H_model.csv model_1179_H_output_data.csv model_1570_H_output_data.csv model_117_H_model.csv model_1571_H_model.csv model_117_H_output_data.csv model_1571_H_output_data.csv model_1180_H_model.csv model_1572_H_model.csv model_1180_H_output_data.csv model_1572_H_output_data.csv model_1181_H_model.csv model_1573_H_model.csv model_1181_H_output_data.csv model_1573_H_output_data.csv model_1182_H_model.csv model_1574_H_model.csv model_1182_H_output_data.csv model_1574_H_output_data.csv model_1183_H_model.csv model_1575_H_model.csv model_1183_H_output_data.csv model_1575_H_output_data.csv model_1184_H_model.csv model_1576_H_model.csv model_1184_H_output_data.csv model_1576_H_output_data.csv model_1185_H_model.csv model_1577_H_model.csv model_1185_H_output_data.csv model_1577_H_output_data.csv model_1186_H_model.csv model_1578_H_model.csv model_1186_H_output_data.csv model_1578_H_output_data.csv model_1187_H_model.csv model_1579_H_model.csv model_1187_H_output_data.csv model_1579_H_output_data.csv model_1188_H_model.csv model_157_H_model.csv model_1188_H_output_data.csv model_157_H_output_data.csv model_1189_H_model.csv model_1580_H_model.csv model_1189_H_output_data.csv model_1580_H_output_data.csv model_118_H_model.csv model_1581_H_model.csv model_118_H_output_data.csv model_1581_H_output_data.csv model_1190_H_model.csv model_1582_H_model.csv model_1190_H_output_data.csv model_1582_H_output_data.csv model_1191_H_model.csv model_1583_H_model.csv model_1191_H_output_data.csv model_1583_H_output_data.csv model_1192_H_model.csv model_1584_H_model.csv model_1192_H_output_data.csv model_1584_H_output_data.csv model_1193_H_model.csv model_1585_H_model.csv model_1193_H_output_data.csv model_1585_H_output_data.csv model_1194_H_model.csv model_1586_H_model.csv model_1194_H_output_data.csv model_1586_H_output_data.csv model_1195_H_model.csv model_1587_H_model.csv model_1195_H_output_data.csv model_1587_H_output_data.csv model_1196_H_model.csv model_1588_H_model.csv model_1196_H_output_data.csv model_1588_H_output_data.csv model_1197_H_model.csv model_1589_H_model.csv model_1197_H_output_data.csv model_1589_H_output_data.csv model_1198_H_model.csv model_158_H_model.csv model_1198_H_output_data.csv model_158_H_output_data.csv model_1199_H_model.csv model_1590_H_model.csv model_1199_H_output_data.csv model_1590_H_output_data.csv model_119_H_model.csv model_1591_H_model.csv model_119_H_output_data.csv model_1591_H_output_data.csv model_11_H_model.csv model_1592_H_model.csv model_11_H_output_data.csv model_1592_H_output_data.csv model_1200_H_model.csv model_1593_H_model.csv model_1200_H_output_data.csv model_1593_H_output_data.csv model_1201_H_model.csv model_1594_H_model.csv model_1201_H_output_data.csv model_1594_H_output_data.csv model_1202_H_model.csv model_1595_H_model.csv model_1202_H_output_data.csv model_1595_H_output_data.csv model_1203_H_model.csv model_1596_H_model.csv model_1203_H_output_data.csv model_1596_H_output_data.csv model_1204_H_model.csv model_1597_H_model.csv model_1204_H_output_data.csv model_1597_H_output_data.csv model_1205_H_model.csv model_1598_H_model.csv model_1205_H_output_data.csv model_1598_H_output_data.csv model_1206_H_model.csv model_1599_H_model.csv model_1206_H_output_data.csv model_1599_H_output_data.csv model_1207_H_model.csv model_159_H_model.csv model_1207_H_output_data.csv model_159_H_output_data.csv model_1208_H_model.csv model_15_H_model.csv model_1208_H_output_data.csv model_15_H_output_data.csv model_1209_H_model.csv model_1600_H_model.csv model_1209_H_output_data.csv model_1600_H_output_data.csv model_120_H_model.csv model_1601_H_model.csv model_120_H_output_data.csv model_1601_H_output_data.csv model_1210_H_model.csv model_1602_H_model.csv model_1210_H_output_data.csv model_1602_H_output_data.csv model_1211_H_model.csv model_1603_H_model.csv model_1211_H_output_data.csv model_1603_H_output_data.csv model_1212_H_model.csv model_1604_H_model.csv model_1212_H_output_data.csv model_1604_H_output_data.csv model_1213_H_model.csv model_1605_H_model.csv model_1213_H_output_data.csv model_1605_H_output_data.csv model_1214_H_model.csv model_1606_H_model.csv model_1214_H_output_data.csv model_1606_H_output_data.csv model_1215_H_model.csv model_1607_H_model.csv model_1215_H_output_data.csv model_1607_H_output_data.csv model_1216_H_model.csv model_1608_H_model.csv model_1216_H_output_data.csv model_1608_H_output_data.csv model_1217_H_model.csv model_1609_H_model.csv model_1217_H_output_data.csv model_1609_H_output_data.csv model_1218_H_model.csv model_160_H_model.csv model_1218_H_output_data.csv model_160_H_output_data.csv model_1219_H_model.csv model_1610_H_model.csv model_1219_H_output_data.csv model_1610_H_output_data.csv model_121_H_model.csv model_1611_H_model.csv model_121_H_output_data.csv model_1611_H_output_data.csv model_1220_H_model.csv model_1612_H_model.csv model_1220_H_output_data.csv model_1612_H_output_data.csv model_1221_H_model.csv model_1613_H_model.csv model_1221_H_output_data.csv model_1613_H_output_data.csv model_1222_H_model.csv model_1614_H_model.csv model_1222_H_output_data.csv model_1614_H_output_data.csv model_1223_H_model.csv model_1615_H_model.csv model_1223_H_output_data.csv model_1615_H_output_data.csv model_1224_H_model.csv model_1616_H_model.csv model_1224_H_output_data.csv model_1616_H_output_data.csv model_1225_H_model.csv model_1617_H_model.csv model_1225_H_output_data.csv model_1617_H_output_data.csv model_1226_H_model.csv model_1618_H_model.csv model_1226_H_output_data.csv model_1618_H_output_data.csv model_1227_H_model.csv model_1619_H_model.csv model_1227_H_output_data.csv model_1619_H_output_data.csv model_1228_H_model.csv model_161_H_model.csv model_1228_H_output_data.csv model_161_H_output_data.csv model_1229_H_model.csv model_1620_H_model.csv model_1229_H_output_data.csv model_1620_H_output_data.csv model_122_H_model.csv model_1621_H_model.csv model_122_H_output_data.csv model_1621_H_output_data.csv model_1230_H_model.csv model_1622_H_model.csv model_1230_H_output_data.csv model_1622_H_output_data.csv model_1231_H_model.csv model_1623_H_model.csv model_1231_H_output_data.csv model_1623_H_output_data.csv model_1232_H_model.csv model_1624_H_model.csv model_1232_H_output_data.csv model_1624_H_output_data.csv model_1233_H_model.csv model_1625_H_model.csv model_1233_H_output_data.csv model_1625_H_output_data.csv model_1234_H_model.csv model_1626_H_model.csv model_1234_H_output_data.csv model_1626_H_output_data.csv model_1235_H_model.csv model_1627_H_model.csv model_1235_H_output_data.csv model_1627_H_output_data.csv model_1236_H_model.csv model_1628_H_model.csv model_1236_H_output_data.csv model_1628_H_output_data.csv model_1237_H_model.csv model_1629_H_model.csv model_1237_H_output_data.csv model_1629_H_output_data.csv model_1238_H_model.csv model_162_H_model.csv model_1238_H_output_data.csv model_162_H_output_data.csv model_1239_H_model.csv model_1630_H_model.csv model_1239_H_output_data.csv model_1630_H_output_data.csv model_123_H_model.csv model_1631_H_model.csv model_123_H_output_data.csv model_1631_H_output_data.csv model_1240_H_model.csv model_1632_H_model.csv model_1240_H_output_data.csv model_1632_H_output_data.csv model_1241_H_model.csv model_1633_H_model.csv model_1241_H_output_data.csv model_1633_H_output_data.csv model_1242_H_model.csv model_1634_H_model.csv model_1242_H_output_data.csv model_1634_H_output_data.csv model_1243_H_model.csv model_1635_H_model.csv model_1243_H_output_data.csv model_1635_H_output_data.csv model_1244_H_model.csv model_1636_H_model.csv model_1244_H_output_data.csv model_1636_H_output_data.csv model_1245_H_model.csv model_1637_H_model.csv model_1245_H_output_data.csv model_1637_H_output_data.csv model_1246_H_model.csv model_1638_H_model.csv model_1246_H_output_data.csv model_1638_H_output_data.csv model_1247_H_model.csv model_1639_H_model.csv model_1247_H_output_data.csv model_1639_H_output_data.csv model_1248_H_model.csv model_163_H_model.csv model_1248_H_output_data.csv model_163_H_output_data.csv model_1249_H_model.csv model_1640_H_model.csv model_1249_H_output_data.csv model_1640_H_output_data.csv model_124_H_model.csv model_1641_H_model.csv model_124_H_output_data.csv model_1641_H_output_data.csv model_1250_H_model.csv model_1642_H_model.csv model_1250_H_output_data.csv model_1642_H_output_data.csv model_1251_H_model.csv model_1643_H_model.csv model_1251_H_output_data.csv model_1643_H_output_data.csv model_1252_H_model.csv model_1644_H_model.csv model_1252_H_output_data.csv model_1644_H_output_data.csv model_1253_H_model.csv model_1645_H_model.csv model_1253_H_output_data.csv model_1645_H_output_data.csv model_1254_H_model.csv model_1646_H_model.csv model_1254_H_output_data.csv model_1646_H_output_data.csv model_1255_H_model.csv model_1647_H_model.csv model_1255_H_output_data.csv model_1647_H_output_data.csv model_1256_H_model.csv model_1648_H_model.csv model_1256_H_output_data.csv model_1648_H_output_data.csv model_1257_H_model.csv model_1649_H_model.csv model_1257_H_output_data.csv model_1649_H_output_data.csv model_1258_H_model.csv model_164_H_model.csv model_1258_H_output_data.csv model_164_H_output_data.csv model_1259_H_model.csv model_1650_H_model.csv model_1259_H_output_data.csv model_1650_H_output_data.csv model_125_H_model.csv model_1651_H_model.csv model_125_H_output_data.csv model_1651_H_output_data.csv model_1260_H_model.csv model_1652_H_model.csv model_1260_H_output_data.csv model_1652_H_output_data.csv model_1261_H_model.csv model_1653_H_model.csv model_1261_H_output_data.csv model_1653_H_output_data.csv model_1262_H_model.csv model_1654_H_model.csv model_1262_H_output_data.csv model_1654_H_output_data.csv model_1263_H_model.csv model_1655_H_model.csv model_1263_H_output_data.csv model_1655_H_output_data.csv model_1264_H_model.csv model_1656_H_model.csv model_1264_H_output_data.csv model_1656_H_output_data.csv model_1265_H_model.csv model_1657_H_model.csv model_1265_H_output_data.csv model_1657_H_output_data.csv model_1266_H_model.csv model_1658_H_model.csv model_1266_H_output_data.csv model_1658_H_output_data.csv model_1267_H_model.csv model_1659_H_model.csv model_1267_H_output_data.csv model_1659_H_output_data.csv model_1268_H_model.csv model_165_H_model.csv model_1268_H_output_data.csv model_165_H_output_data.csv model_1269_H_model.csv model_1660_H_model.csv model_1269_H_output_data.csv model_1660_H_output_data.csv model_126_H_model.csv model_1661_H_model.csv model_126_H_output_data.csv model_1661_H_output_data.csv model_1270_H_model.csv model_1662_H_model.csv model_1270_H_output_data.csv model_1662_H_output_data.csv model_1271_H_model.csv model_1663_H_model.csv model_1271_H_output_data.csv model_1663_H_output_data.csv model_1272_H_model.csv model_1664_H_model.csv model_1272_H_output_data.csv model_1664_H_output_data.csv model_1273_H_model.csv model_1665_H_model.csv model_1273_H_output_data.csv model_1665_H_output_data.csv model_1274_H_model.csv model_1666_H_model.csv model_1274_H_output_data.csv model_1666_H_output_data.csv model_1275_H_model.csv model_1667_H_model.csv model_1275_H_output_data.csv model_1667_H_output_data.csv model_1276_H_model.csv model_1668_H_model.csv model_1276_H_output_data.csv model_1668_H_output_data.csv model_1277_H_model.csv model_1669_H_model.csv model_1277_H_output_data.csv model_1669_H_output_data.csv model_1278_H_model.csv model_166_H_model.csv model_1278_H_output_data.csv model_166_H_output_data.csv model_1279_H_model.csv model_1670_H_model.csv model_1279_H_output_data.csv model_1670_H_output_data.csv model_127_H_model.csv model_1671_H_model.csv model_127_H_output_data.csv model_1671_H_output_data.csv model_1280_H_model.csv model_1672_H_model.csv model_1280_H_output_data.csv model_1672_H_output_data.csv model_1281_H_model.csv model_1673_H_model.csv model_1281_H_output_data.csv model_1673_H_output_data.csv model_1282_H_model.csv model_1674_H_model.csv model_1282_H_output_data.csv model_1674_H_output_data.csv model_1283_H_model.csv model_1675_H_model.csv model_1283_H_output_data.csv model_1675_H_output_data.csv model_1284_H_model.csv model_1676_H_model.csv model_1284_H_output_data.csv model_1676_H_output_data.csv model_1285_H_model.csv model_1677_H_model.csv model_1285_H_output_data.csv model_1677_H_output_data.csv model_1286_H_model.csv model_1678_H_model.csv model_1286_H_output_data.csv model_1678_H_output_data.csv model_1287_H_model.csv model_1679_H_model.csv model_1287_H_output_data.csv model_1679_H_output_data.csv model_1288_H_model.csv model_167_H_model.csv model_1288_H_output_data.csv model_167_H_output_data.csv model_1289_H_model.csv model_1680_H_model.csv model_1289_H_output_data.csv model_1680_H_output_data.csv model_128_H_model.csv model_1681_H_model.csv model_128_H_output_data.csv model_1681_H_output_data.csv model_1290_H_model.csv model_1682_H_model.csv model_1290_H_output_data.csv model_1682_H_output_data.csv model_1291_H_model.csv model_1683_H_model.csv model_1291_H_output_data.csv model_1683_H_output_data.csv model_1292_H_model.csv model_1684_H_model.csv model_1292_H_output_data.csv model_1684_H_output_data.csv model_1293_H_model.csv model_1685_H_model.csv model_1293_H_output_data.csv model_1685_H_output_data.csv model_1294_H_model.csv model_1686_H_model.csv model_1294_H_output_data.csv model_1686_H_output_data.csv model_1295_H_model.csv model_1687_H_model.csv model_1295_H_output_data.csv model_1687_H_output_data.csv model_1296_H_model.csv model_1688_H_model.csv model_1296_H_output_data.csv model_1688_H_output_data.csv model_1297_H_model.csv model_1689_H_model.csv model_1297_H_output_data.csv model_1689_H_output_data.csv model_1298_H_model.csv model_168_H_model.csv model_1298_H_output_data.csv model_168_H_output_data.csv model_1299_H_model.csv model_1690_H_model.csv model_1299_H_output_data.csv model_1690_H_output_data.csv model_129_H_model.csv model_1691_H_model.csv model_129_H_output_data.csv model_1691_H_output_data.csv model_12_H_model.csv model_1692_H_model.csv model_12_H_output_data.csv model_1692_H_output_data.csv model_1300_H_model.csv model_1693_H_model.csv model_1300_H_output_data.csv model_1693_H_output_data.csv model_1301_H_model.csv model_1694_H_model.csv model_1301_H_output_data.csv model_1694_H_output_data.csv model_1302_H_model.csv model_1695_H_model.csv model_1302_H_output_data.csv model_1695_H_output_data.csv model_1303_H_model.csv model_1696_H_model.csv model_1303_H_output_data.csv model_1696_H_output_data.csv model_1304_H_model.csv model_1697_H_model.csv model_1304_H_output_data.csv model_1697_H_output_data.csv model_1305_H_model.csv model_1698_H_model.csv model_1305_H_output_data.csv model_1698_H_output_data.csv model_1306_H_model.csv model_1699_H_model.csv model_1306_H_output_data.csv model_1699_H_output_data.csv model_1307_H_model.csv model_169_H_model.csv model_1307_H_output_data.csv model_169_H_output_data.csv model_1308_H_model.csv model_16_H_model.csv model_1308_H_output_data.csv model_16_H_output_data.csv model_1309_H_model.csv model_1700_H_model.csv model_1309_H_output_data.csv model_1700_H_output_data.csv model_130_H_model.csv model_1701_H_model.csv model_130_H_output_data.csv model_1701_H_output_data.csv model_1310_H_model.csv model_1702_H_model.csv model_1310_H_output_data.csv model_1702_H_output_data.csv model_1311_H_model.csv model_1703_H_model.csv model_1311_H_output_data.csv model_1703_H_output_data.csv model_1312_H_model.csv model_1704_H_model.csv model_1312_H_output_data.csv model_1704_H_output_data.csv model_1313_H_model.csv model_1705_H_model.csv model_1313_H_output_data.csv model_1705_H_output_data.csv model_1314_H_model.csv model_1706_H_model.csv model_1314_H_output_data.csv model_1706_H_output_data.csv model_1315_H_model.csv model_1707_H_model.csv model_1315_H_output_data.csv model_1707_H_output_data.csv model_1316_H_model.csv model_1708_H_model.csv model_1316_H_output_data.csv model_1708_H_output_data.csv model_1317_H_model.csv model_1709_H_model.csv model_1317_H_output_data.csv model_1709_H_output_data.csv model_1318_H_model.csv model_170_H_model.csv model_1318_H_output_data.csv model_170_H_output_data.csv model_1319_H_model.csv model_1710_H_model.csv model_1319_H_output_data.csv model_1710_H_output_data.csv model_131_H_model.csv model_1711_H_model.csv model_131_H_output_data.csv model_1711_H_output_data.csv model_1320_H_model.csv model_1712_H_model.csv model_1320_H_output_data.csv model_1712_H_output_data.csv model_1321_H_model.csv model_1713_H_model.csv model_1321_H_output_data.csv model_1713_H_output_data.csv model_1322_H_model.csv model_1714_H_model.csv model_1322_H_output_data.csv model_1714_H_output_data.csv model_1323_H_model.csv model_1715_H_model.csv model_1323_H_output_data.csv model_1715_H_output_data.csv model_1324_H_model.csv model_1716_H_model.csv model_1324_H_output_data.csv model_1716_H_output_data.csv model_1325_H_model.csv model_1717_H_model.csv model_1325_H_output_data.csv model_1717_H_output_data.csv model_1326_H_model.csv model_1718_H_model.csv model_1326_H_output_data.csv model_1718_H_output_data.csv model_1327_H_model.csv model_1719_H_model.csv model_1327_H_output_data.csv model_1719_H_output_data.csv model_1328_H_model.csv model_171_H_model.csv model_1328_H_output_data.csv model_171_H_output_data.csv model_1329_H_model.csv model_1720_H_model.csv model_1329_H_output_data.csv model_1720_H_output_data.csv model_132_H_model.csv model_1721_H_model.csv model_132_H_output_data.csv model_1721_H_output_data.csv model_1330_H_model.csv model_1722_H_model.csv model_1330_H_output_data.csv model_1722_H_output_data.csv model_1331_H_model.csv model_1723_H_model.csv model_1331_H_output_data.csv model_1723_H_output_data.csv model_1332_H_model.csv model_1724_H_model.csv model_1332_H_output_data.csv model_1724_H_output_data.csv model_1333_H_model.csv model_1725_H_model.csv model_1333_H_output_data.csv model_1725_H_output_data.csv model_1334_H_model.csv model_1726_H_model.csv model_1334_H_output_data.csv model_1726_H_output_data.csv model_1335_H_model.csv model_1727_H_model.csv model_1335_H_output_data.csv model_1727_H_output_data.csv model_1336_H_model.csv model_1728_H_model.csv model_1336_H_output_data.csv model_1728_H_output_data.csv model_1337_H_model.csv model_1729_H_model.csv model_1337_H_output_data.csv model_1729_H_output_data.csv model_1338_H_model.csv model_172_H_model.csv model_1338_H_output_data.csv model_172_H_output_data.csv model_1339_H_model.csv model_1730_H_model.csv model_1339_H_output_data.csv model_1730_H_output_data.csv model_133_H_model.csv model_1731_H_model.csv model_133_H_output_data.csv model_1731_H_output_data.csv model_1340_H_model.csv model_1732_H_model.csv model_1340_H_output_data.csv model_1732_H_output_data.csv model_1341_H_model.csv model_1733_H_model.csv model_1341_H_output_data.csv model_1733_H_output_data.csv model_1342_H_model.csv model_1734_H_model.csv model_1342_H_output_data.csv model_1734_H_output_data.csv model_1343_H_model.csv model_1735_H_model.csv model_1343_H_output_data.csv model_1735_H_output_data.csv model_1344_H_model.csv model_1736_H_model.csv model_1344_H_output_data.csv model_1736_H_output_data.csv model_1345_H_model.csv model_1737_H_model.csv model_1345_H_output_data.csv model_1737_H_output_data.csv model_1346_H_model.csv model_1738_H_model.csv model_1346_H_output_data.csv model_1738_H_output_data.csv model_1347_H_model.csv model_1739_H_model.csv model_1347_H_output_data.csv model_1739_H_output_data.csv model_1348_H_model.csv model_173_H_model.csv model_1348_H_output_data.csv model_173_H_output_data.csv model_1349_H_model.csv model_1740_H_model.csv model_1349_H_output_data.csv model_1740_H_output_data.csv model_134_H_model.csv model_1741_H_model.csv model_134_H_output_data.csv model_1741_H_output_data.csv model_1350_H_model.csv model_1742_H_model.csv model_1350_H_output_data.csv model_1742_H_output_data.csv model_1351_H_model.csv model_1743_H_model.csv model_1351_H_output_data.csv model_1743_H_output_data.csv model_1352_H_model.csv model_1744_H_model.csv model_1352_H_output_data.csv model_1744_H_output_data.csv model_1353_H_model.csv model_1745_H_model.csv model_1353_H_output_data.csv model_1745_H_output_data.csv model_1354_H_model.csv model_1746_H_model.csv model_1354_H_output_data.csv model_1746_H_output_data.csv model_1355_H_model.csv model_1747_H_model.csv model_1355_H_output_data.csv model_1747_H_output_data.csv model_1356_H_model.csv model_1748_H_model.csv model_1356_H_output_data.csv model_1748_H_output_data.csv model_1357_H_model.csv model_1749_H_model.csv model_1357_H_output_data.csv model_1749_H_output_data.csv model_1358_H_model.csv model_174_H_model.csv model_1358_H_output_data.csv model_174_H_output_data.csv model_1359_H_model.csv model_1750_H_model.csv model_1359_H_output_data.csv model_1750_H_output_data.csv model_135_H_model.csv model_1751_H_model.csv model_135_H_output_data.csv model_1751_H_output_data.csv model_1360_H_model.csv model_1752_H_model.csv model_1360_H_output_data.csv model_1752_H_output_data.csv model_1361_H_model.csv model_1753_H_model.csv model_1361_H_output_data.csv model_1753_H_output_data.csv model_1362_H_model.csv model_1754_H_model.csv model_1362_H_output_data.csv model_1754_H_output_data.csv model_1363_H_model.csv model_1755_H_model.csv model_1363_H_output_data.csv model_1755_H_output_data.csv model_1364_H_model.csv model_1756_H_model.csv model_1364_H_output_data.csv model_1756_H_output_data.csv model_1365_H_model.csv model_1757_H_model.csv model_1365_H_output_data.csv model_1757_H_output_data.csv model_1366_H_model.csv model_1758_H_model.csv model_1366_H_output_data.csv model_1758_H_output_data.csv model_1367_H_model.csv model_1759_H_model.csv model_1367_H_output_data.csv model_1759_H_output_data.csv model_1368_H_model.csv model_175_H_model.csv model_1368_H_output_data.csv model_175_H_output_data.csv model_1369_H_model.csv model_1760_H_model.csv model_1369_H_output_data.csv model_1760_H_output_data.csv model_136_H_model.csv model_1761_H_model.csv model_136_H_output_data.csv model_1761_H_output_data.csv model_1370_H_model.csv model_1762_H_model.csv model_1370_H_output_data.csv model_1762_H_output_data.csv model_1371_H_model.csv model_1763_H_model.csv model_1371_H_output_data.csv model_1763_H_output_data.csv model_1372_H_model.csv model_1764_H_model.csv model_1372_H_output_data.csv model_1764_H_output_data.csv model_1373_H_model.csv model_1765_H_model.csv model_1373_H_output_data.csv model_1765_H_output_data.csv model_1374_H_model.csv model_1766_H_model.csv model_1374_H_output_data.csv model_1766_H_output_data.csv model_1375_H_model.csv model_1767_H_model.csv model_1375_H_output_data.csv model_1767_H_output_data.csv model_1376_H_model.csv model_1768_H_model.csv model_1376_H_output_data.csv model_1768_H_output_data.csv model_1377_H_model.csv model_1769_H_model.csv model_1377_H_output_data.csv model_1769_H_output_data.csv model_1378_H_model.csv model_176_H_model.csv model_1378_H_output_data.csv model_176_H_output_data.csv model_1379_H_model.csv model_1770_H_model.csv model_1379_H_output_data.csv model_1770_H_output_data.csv model_137_H_model.csv model_1771_H_model.csv model_137_H_output_data.csv model_1771_H_output_data.csv model_1380_H_model.csv model_1772_H_model.csv model_1380_H_output_data.csv model_1772_H_output_data.csv model_1381_H_model.csv model_1773_H_model.csv model_1381_H_output_data.csv model_1773_H_output_data.csv model_1382_H_model.csv model_1774_H_model.csv model_1382_H_output_data.csv model_1774_H_output_data.csv model_1383_H_model.csv model_1775_H_model.csv model_1383_H_output_data.csv model_1775_H_output_data.csv model_1384_H_model.csv model_1776_H_model.csv model_1384_H_output_data.csv model_1776_H_output_data.csv model_1385_H_model.csv model_1777_H_model.csv model_1385_H_output_data.csv model_1777_H_output_data.csv model_1386_H_model.csv model_1778_H_model.csv model_1386_H_output_data.csv model_1778_H_output_data.csv model_1387_H_model.csv model_1779_H_model.csv model_1387_H_output_data.csv model_1779_H_output_data.csv model_1388_H_model.csv model_177_H_model.csv model_1388_H_output_data.csv model_177_H_output_data.csv model_1389_H_model.csv model_1780_H_model.csv model_1389_H_output_data.csv model_1780_H_output_data.csv model_138_H_model.csv model_1781_H_model.csv model_138_H_output_data.csv model_1781_H_output_data.csv model_1390_H_model.csv model_1782_H_model.csv model_1390_H_output_data.csv model_1782_H_output_data.csv model_1391_H_model.csv model_1783_H_model.csv model_1391_H_output_data.csv model_1783_H_output_data.csv model_1392_H_model.csv Sharad_Ideal_matchedFilter.csv* model_1392_H_output_data.csv Sharad_Ideal_sourcePulse.csv*
import os
from glob import glob
import pandas as pd
import numpy as np
# Initializing the two input parameters for the Scikit-Learn MLPClassifier function
models = []
labels = []
modelPlaceholder = pd.DataFrame()
labelPlaceholder = pd.DataFrame()
for file in glob(os.getcwd()+"/*model.csv"):
num = glob(file)[0].rsplit('_', 1)[0].rsplit('/', 1)[1].rsplit('_', 1)[0].rsplit('_', 1)[1]
model = pd.read_csv(glob("*"+str(num)+"*output*.csv")[0], index_col=None, header=0)
trainLabs = pd.read_csv(file.rsplit('/', 1)[1], index_col=None, header=0)
if len(trainLabs) == 1:
# Some of the models didn't fully generate data as I manually stopped the shell script. The end result
# is that I need to ignore those models. This ignores all models that did not fully generate their
# training labels.
pass
else:
# Grabbing just the reflection rows (ignoring model-generated data above the ice, and below the final layer interface)
model["Distance"] = (model["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model.loc[model["Distance"] >= 0].index[0])
basalIndex = int(model.loc[model["Distance"] >= 2000].index[0])
model = model.loc[surfaceIndex:basalIndex,]
# Labeling layers
model["Layer Interface"] = model["Distance"].apply(lambda x: True if round(x) % (trainLabs["Depth (m)"][1]-trainLabs["Depth (m)"][0]) == 0 else False)
# Adding to model placeholder variable
modelPlaceholder[str(num)] = model["power (dB)"]
labelPlaceholder[str(num)] = model["Layer Interface"]
modelPlaceholder = modelPlaceholder.fillna(0)
labelPlaceholder = labelPlaceholder.fillna(0)
/tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"] /tmp/ipykernel_262711/2152042525.py:34: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` modelPlaceholder[str(num)] = model["power (dB)"] /tmp/ipykernel_262711/2152042525.py:35: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()` labelPlaceholder[str(num)] = model["Layer Interface"]
Since the data is "fragmented" I am making .copy() objects of the placeholders:
models = modelPlaceholder.copy()
labels = labelPlaceholder.copy()
print(models,labels)
916 351 694 880 660 471 \ 2125 -0.059591 -0.059988 -0.059591 -0.059591 -0.059692 -0.059591 2126 -0.238738 -0.239573 -0.238738 -0.238738 -0.238967 -0.238738 2127 -0.538582 -0.539881 -0.538582 -0.538582 -0.538964 -0.538582 2128 -0.961064 -0.962837 -0.961064 -0.961064 -0.961623 -0.961064 2129 -1.508996 -1.511236 -1.508996 -1.508996 -1.509751 -1.508996 ... ... ... ... ... ... ... 3295 -51.572928 -50.892849 -51.572928 -51.572928 -51.044625 -51.572928 3296 -52.464952 -51.795110 -52.464952 -52.464952 -51.896864 -52.464952 3297 -53.737978 -53.072783 -53.737978 -53.737978 -53.109533 -53.737978 3298 -55.536071 -54.867483 -55.536071 -55.536071 -54.810444 -55.536071 3299 -58.146564 -57.459295 -58.146564 -58.146564 -57.245285 -58.146564 289 311 897 860 ... 837 213 \ 2125 -0.059591 -0.059591 -0.059498 -0.059596 ... -0.059591 -0.059591 2126 -0.238738 -0.238738 -0.238578 -0.238747 ... -0.238738 -0.238738 2127 -0.538582 -0.538582 -0.538380 -0.538586 ... -0.538582 -0.538582 2128 -0.961064 -0.961064 -0.960847 -0.961046 ... -0.961064 -0.961064 2129 -1.508996 -1.508996 -1.508794 -1.508931 ... -1.508996 -1.508996 ... ... ... ... ... ... ... ... 3295 -51.572928 -51.572928 -51.628599 -51.375331 ... -51.572928 -51.572928 3296 -52.464952 -52.464952 -52.519744 -52.266220 ... -52.464952 -52.464952 3297 -53.737978 -53.737978 -53.800219 -53.528529 ... -53.737978 -53.737978 3298 -55.536071 -55.536071 -55.622609 -55.300750 ... -55.536071 -55.536071 3299 -58.146564 -58.146564 -58.300131 -57.856609 ... -58.146564 -58.146564 629 552 840 467 313 659 \ 2125 -0.059591 -0.059591 -0.059591 -0.059591 -0.059591 -0.059591 2126 -0.238738 -0.238738 -0.238738 -0.238738 -0.238738 -0.238738 2127 -0.538582 -0.538582 -0.538582 -0.538582 -0.538582 -0.538582 2128 -0.961064 -0.961064 -0.961064 -0.961064 -0.961064 -0.961064 2129 -1.508996 -1.508996 -1.508996 -1.508996 -1.508996 -1.508996 ... ... ... ... ... ... ... 3295 -51.572928 -51.572928 -51.572928 -51.572928 -51.572928 -51.572928 3296 -52.464952 -52.464952 -52.464952 -52.464952 -52.464952 -52.464952 3297 -53.737978 -53.737978 -53.737978 -53.737978 -53.737978 -53.737978 3298 -55.536071 -55.536071 -55.536071 -55.536071 -55.536071 -55.536071 3299 -58.146564 -58.146564 -58.146564 -58.146564 -58.146564 -58.146564 805 710 2125 -0.059593 -0.059523 2126 -0.238712 -0.238644 2127 -0.538498 -0.538501 2128 -0.960898 -0.961034 2129 -1.508727 -1.509050 ... ... ... 3295 -51.838584 -51.117287 3296 -52.736204 -51.986805 3297 -54.022413 -53.223457 3298 -55.846936 -54.960052 3299 -58.514457 -57.456847 [1175 rows x 997 columns] 916 351 694 880 660 471 289 311 897 860 \ 2125 False False False False False False False False False False 2126 False False False False False False False False False False 2127 False False False False False False False False False False 2128 False False False False False False False False False False 2129 False False False False False False False False False False ... ... ... ... ... ... ... ... ... ... ... 3295 False False False False False False False False False False 3296 False False False False False False False False False False 3297 False False False False False False False False False False 3298 False False False False False False False False False False 3299 False False False False False False False False False False ... 837 213 629 552 840 467 313 659 805 \ 2125 ... False False False False False False False False False 2126 ... False False False False False False False False False 2127 ... False False False False False False False False False 2128 ... False False False False False False False False False 2129 ... False False False False False False False False False ... ... ... ... ... ... ... ... ... ... ... 3295 ... False False False False False False False False False 3296 ... False False False False False False False False False 3297 ... False False False False False False False False False 3298 ... False False False False False False False False False 3299 ... False False False False False False False False False 710 2125 False 2126 False 2127 False 2128 False 2129 False ... ... 3295 False 3296 False 3297 False 3298 False 3299 False [1175 rows x 997 columns]
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(15,), random_state=1, max_iter=1000)
clf.fit(models,labels)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(15,), random_state=1, solver='lbfgs', max_iter=1000)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(15,), max_iter=1000, random_state=1, solver='lbfgs')
The "lbfgs" algorithm uses gradient descent in order to "learn". This simply means that the local minimum (i.e. the lowest difference between predicted value and actual value) is searched for.
In the interest of time, I will accept that this can be improved with more training data, but will move forward with my machine learning prediction in order to show that the pipeline itself has been completed (and out of curiosity to see how close to accurate the model can get).
In order to test this model I will generate one final model-generated dataset and then run a test off of that.
# Set to run for a series of different layer sizes
# with a depth of 2000 m,
# modelCount set to 1 so the model name isn't the same as the previously-generated training data (which went from modelCount 5-2000),
# an iteration step size of 1 m,
# a starting layer size of 20 m,
# and the bandwidth to calculate for is the high freq sub-band (20-25 MHz).
# The singleModel parameter is set to 0 so it iterates up to the depth, creating a model for ever 1 m interval.
generateModels(2000, 1, 1, 20, 2, 1)
ls *_1_*.txt
model_1_H.txt
!python radar_FM1D_refMethod.py model_1_H.txt
ls *_1_*
model_1_H_model.csv model_1_H_output_figure.png
model_1_H_output_data.csv model_1_H.txt
model = pd.read_csv("model_1_H_output_data.csv", index_col=None, header=0)
model["Distance"] = (model["Time (s)"]*(3e8))/(2*np.sqrt(3.1))
surfaceIndex = int(model.loc[model["Distance"] >= 0].index[0])
basalIndex = int(model.loc[model["Distance"] >= 2000].index[0])
model = model.loc[surfaceIndex:basalIndex,]
model
Time (s) | power (dB) | amplitude (real) | amplitude (imag) | Distance | |
---|---|---|---|---|---|
2125 | 1.000235e-08 | 0.000000 | -2.326257e-06 | 7.858853e-07 | 0.852143 |
2126 | 3.000706e-08 | -0.052559 | 1.953744e-06 | -1.462684e-06 | 2.556430 |
2127 | 5.001177e-08 | -0.204251 | -1.375685e-06 | 1.964584e-06 | 4.260716 |
2128 | 7.001647e-08 | -0.452530 | 6.733985e-07 | -2.231371e-06 | 5.965003 |
2129 | 9.002118e-08 | -0.794656 | 5.679134e-08 | 2.240028e-06 | 7.669289 |
... | ... | ... | ... | ... | ... |
3295 | 2.341551e-05 | -48.349075 | 4.879830e-09 | 8.022590e-09 | 1994.867362 |
3296 | 2.343551e-05 | -48.910990 | -6.346887e-09 | -6.098393e-09 | 1996.571648 |
3297 | 2.345552e-05 | -49.854180 | 6.954046e-09 | 3.740430e-09 | 1998.275935 |
3298 | 2.347552e-05 | -51.270556 | -6.575202e-09 | -1.328529e-09 | 1999.980221 |
3299 | 2.349553e-05 | -53.311103 | 5.253879e-09 | -7.244983e-10 | 2001.684508 |
1175 rows × 5 columns
model = model.drop(['Time (s)', 'amplitude (real)', 'amplitude (imag)', 'Distance'], axis=1)
clf.predict(model.T)
/home/abraeley/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but MLPClassifier was fitted with feature names warnings.warn(
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) /tmp/ipykernel_262711/1531670052.py in <module> 1 #model = model.drop(['Time (s)', 'amplitude (real)', 'amplitude (imag)', 'Distance'], axis=1) ----> 2 clf.predict(model.T) ~/anaconda3/lib/python3.9/site-packages/sklearn/neural_network/_multilayer_perceptron.py in predict(self, X) 1165 """ 1166 check_is_fitted(self) -> 1167 y_pred = self._forward_pass_fast(X) 1168 1169 if self.n_outputs_ == 1: ~/anaconda3/lib/python3.9/site-packages/sklearn/neural_network/_multilayer_perceptron.py in _forward_pass_fast(self, X) 157 The decision function of the samples for each class in the model. 158 """ --> 159 X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False) 160 161 # Initialize first layer ~/anaconda3/lib/python3.9/site-packages/sklearn/base.py in _validate_data(self, X, y, reset, validate_separately, **check_params) 583 584 if not no_val_X and check_params.get("ensure_2d", True): --> 585 self._check_n_features(X, reset=reset) 586 587 return out ~/anaconda3/lib/python3.9/site-packages/sklearn/base.py in _check_n_features(self, X, reset) 398 399 if n_features != self.n_features_in_: --> 400 raise ValueError( 401 f"X has {n_features} features, but {self.__class__.__name__} " 402 f"is expecting {self.n_features_in_} features as input." ValueError: X has 1175 features, but MLPClassifier is expecting 997 features as input.
I can see that in the process of trying to train my neural network, I encountered a new problem with my training data: since the model-generated data is not all one continuous size from the surface reflector to the basal reflector, the Scikit-Learn function gets confused.
I need to build out more of my data-processing pipeline in order fit the neural network with the same number of input parameters for all training data, as well as for testing data.
This also presents a new challenge for testing this against the raw radar data, which are always 3600 pixels in height. The distance between one pixel (vertically) to the next is not the same as one row from the model-generated data to the next row.
My next goal in this process is to determine the best way to normalize between:
At that point, I will be able to again try training this neural network. I will mark the milestone of having trained the model to the point of convergence successfully, meaning that it was able to "learn" off of the parameters and labels fed in, a potentially significant milestone in being able to predict the locations of stratigraphic layers based solely off the power values of specific reflectors.
Seu, R., Phillips, R. J., Biccari, D., Orosei, R., Masdea, A., Picardi, G., Safaeinili, A., Campbell, B. A., Plaut, J. J., Marinangeli, L., Smrekar, S. E., & Nunes, D. C. (2007). SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112(E5), E05S05. https://doi.org/10.1029/2006JE002745
Byrne, S. (2009). The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37(1), 535–560. https://doi.org/10.1146/annurev.earth.031208.100101
Smith, I. B., Hayne, P. O., Byrne, S., Becerra, P., Kahre, M., Calvin, W., ... & Horgan, B. (2020), The Holy Grail: A road map for unlocking the climate record stored within Mars’ polar layered deposits, Planet. Space Sci., 184, 104841. https://doi.org/10.1016/j.pss.2020.104841